The influence of electron inertia on the incompressible plasma flow in a planar channel
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The single-fluid model of the electromagnetic hydrodynamics (EMHD) quasineutral plasma with electron inertia taken into account are considered in the paper. EMHD and MHD models comparison has done on the example of solving the classical problem of a steady flow of an incompressible plasma in a plane channel. In MHD theory the solution is given by Hartman flow. In EMHD diagram of the longitudinal velocity, as shown in the work, can be significantly different from the profile of Hartman. In particular, there are near-wall and counter flow and flow velocity may significantly deviate from the direction anti-gradient pressure, forcing the plasma flow (hydrodynamic “Hall effect”). The study showed that the EMHD and MHD flat channel theories are practically the same for liquid metal plasma and very different for gas plasma.
Keywords: classic MHD, electromagnetic hydrodynamics (EMHD), steady state flow, planar channel, Hartman flow, Hartman number, hydrodynamics "Hall effect", boundary layer.
Mots-clés : incompressible plasma
@article{MM_2012_24_9_a6,
     author = {M. B. Gavrikov and A. A. Tayurskiy},
     title = {The influence of electron inertia on the incompressible plasma flow in a planar channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a6/}
}
TY  - JOUR
AU  - M. B. Gavrikov
AU  - A. A. Tayurskiy
TI  - The influence of electron inertia on the incompressible plasma flow in a planar channel
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 79
EP  - 96
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a6/
LA  - ru
ID  - MM_2012_24_9_a6
ER  - 
%0 Journal Article
%A M. B. Gavrikov
%A A. A. Tayurskiy
%T The influence of electron inertia on the incompressible plasma flow in a planar channel
%J Matematičeskoe modelirovanie
%D 2012
%P 79-96
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a6/
%G ru
%F MM_2012_24_9_a6
M. B. Gavrikov; A. A. Tayurskiy. The influence of electron inertia on the incompressible plasma flow in a planar channel. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a6/

[1] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Logos, M., 2005, 328 pp.

[2] Morozov A. I., Vvedenie v plazmodinamiku, Fizmatlit, M., 2006, 616 pp.

[3] Kingsep A. S., Chukbar K. V., Yankov V. V., “Elektronnaya magnitnaya gidrodinamika”, Voprosy teorii plazmy, 16, ed. B. B. Kadomtsev, Energoatomizdat, M., 1987, 209–250

[4] Shafranov V. D., “Ravnovesie plazmy v magnitnom pole”, Voprosy teorii plazmy, 2, ed. M. A. Leontovich, Gosatomizdat, M., 1963, 92–131

[5] Imshennik V. S., Bobrova N. A., Dinamika stolknovitelnoi plazmy, Energoatomizdat, M., 1997, 319 pp.

[6] Gavrikov M. B., Lineinye volny v nerelyativistskoi magnitnoi gidrodinamike, preprint No 199, IPM M. V. Keldysha AN SSSR, M., 1988, 28 pp.

[7] Gavrikov M. B., Savelev V. V., Tayurskii A. A., “Solitony v dvukhzhidkostnoi magnitnoi gidrodinamike s uchetom inertsii elektronov”, Izv. Vuzov “PND”, 18:4 (2010), 132–147 | Zbl

[8] Gavrikov M. B., Savelyev V. V., “Equilibrium configurations of plasma in the approximation of two-fluid magnetohydrodynamics with electron enertia taken into account”, Journal of Mathematical Sciences, 163:1 (2009), 1–40 | DOI | MR | Zbl

[9] Gavrikov M. B., Savelev V. V., Shmarovoz G. V., Uskorenie dvukhzhidkostnoi plazmy v ploskom kanale, preprint No 52, IPM im. M. V. Keldysha RAN, M., 2009, 26 pp. | MR

[10] Gavrikov M. B., Sorokin R. V., “Odnorodnye deformatsii dvukhzhidkostnoi plazmy s uchetom inertsii elektronov”, Izv. RAN MZhG, 6 (2008), 156 | MR | Zbl

[11] Braginskii S. I., “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, 1, ed. M. A. Leontovich, Gosatomizdat, M., 1963, 183–272

[12] Bobrova N. A., Lazzaro E., Sasorov P. V., “Magnetohydrodynamics two-temperature equations for multicomponent plasma”, Physics of plasma, 12 (2005), 022105 | DOI

[13] Spittser L., Fizika polnostyu ionizovannogo gaza, Mir, M., 1965, 212 pp.

[14] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986, 736 pp. | MR