Nonstationary assimilation problem for an image of "velocities" in a model of magnetic hydrodynamics
Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of nonstationary physical process in vertical flow, created in magnetic hydrodynamic way in a thin layer of rotating liquid, is proposed. An inverse problem on restoring electric field vector is stated and studied, an algorithm of numerical solution is formulated and the results of numerical experiments are presented.
Keywords: inverse problems
Mots-clés : variational data assimilation, images, adjoint problem.
@article{MM_2012_24_8_a7,
     author = {A. Yu. Semenenko},
     title = {Nonstationary assimilation problem for an image of "velocities" in a model of magnetic hydrodynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {24},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_8_a7/}
}
TY  - JOUR
AU  - A. Yu. Semenenko
TI  - Nonstationary assimilation problem for an image of "velocities" in a model of magnetic hydrodynamics
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 121
EP  - 136
VL  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_8_a7/
LA  - ru
ID  - MM_2012_24_8_a7
ER  - 
%0 Journal Article
%A A. Yu. Semenenko
%T Nonstationary assimilation problem for an image of "velocities" in a model of magnetic hydrodynamics
%J Matematičeskoe modelirovanie
%D 2012
%P 121-136
%V 24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_8_a7/
%G ru
%F MM_2012_24_8_a7
A. Yu. Semenenko. Nonstationary assimilation problem for an image of "velocities" in a model of magnetic hydrodynamics. Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2012_24_8_a7/

[1] Ponomarev V. M., Khapaev A. A., Yakushkin I. G., “Nelineinoe ekmanovskoe trenie i asimmetriya tsiklonicheskikh i antitsiklonicheskikh kogerentnykh struktur v geofizicheskikh techeniyakh”, DAN, 425:6 (2009), 821–826 | MR | Zbl

[2] Agoshkov V. I., Kostrykin S. V., Semenenko A. Yu., “Inverse problem for a model of magnetic hydrodynamics”, Russ. J. Numer. Anal. Math. Modelling, 26:1 (2011), 1–15 | DOI | MR | Zbl

[3] Agoshkov V. I., Metody optimalnogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, Moskva, 2003, 256 pp. | MR

[4] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp.

[7] Marchuk G. I., Sarkisyan A. S., Matematicheskoe modelirovanie tsirkulyatsii okeana, Nauka, M., 1988, 304 pp. | MR

[8] Yanovskii B. M., Zemnoi magnetizm, Izd-vo Leningradskogo universiteta, Leningrad, 1964

[9] Kirko I. M., Kirko G. E., Magnitnaya gidrodinamika. Sovremennoe videnie problem, NITs «Regulyarnaya i khaoticheskaya dinamika». Izhevskii Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2009, 632 pp.

[10] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971, 104 pp. | MR | Zbl

[11] Arakava A., Lemb V. R., “Vychislitelnye skhemy dlya osnovnykh dinamicheskikh protsessov v globalnoi tsirkulyatsionnoi modeli Kaliforniiskogo universiteta v Los-Anzhelese”, Modeli obschei tsirkulyatsii atmosfery, Gidrometeoizdat, L., 1981, 352