Splitting schemes in mixed finite element method for a solution to heat transfer problem
Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A few numerical algorithms for a solution to the non-stationary heat transfer equations in terms “temperature — heat flow vector” are discussed. In other words, non-stationary problem in the mixed formulation is considered, and spatial approximation is implemented by the Mixed Finite Element Method. For the vector equation of the mesh heat flow a few splitting schemes are analyzed. Main attention is given to the comparison of an accuracy of the proposed schemes.
Keywords: splitting scheme, mixed finite element method, heat transfer, approximation, stability.
@article{MM_2012_24_8_a6,
     author = {K. V. Voronin and Y. M. Laevsky},
     title = {Splitting schemes in mixed finite element method for a solution to heat transfer problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {24},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_8_a6/}
}
TY  - JOUR
AU  - K. V. Voronin
AU  - Y. M. Laevsky
TI  - Splitting schemes in mixed finite element method for a solution to heat transfer problem
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 109
EP  - 120
VL  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_8_a6/
LA  - ru
ID  - MM_2012_24_8_a6
ER  - 
%0 Journal Article
%A K. V. Voronin
%A Y. M. Laevsky
%T Splitting schemes in mixed finite element method for a solution to heat transfer problem
%J Matematičeskoe modelirovanie
%D 2012
%P 109-120
%V 24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_8_a6/
%G ru
%F MM_2012_24_8_a6
K. V. Voronin; Y. M. Laevsky. Splitting schemes in mixed finite element method for a solution to heat transfer problem. Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 109-120. http://geodesic.mathdoc.fr/item/MM_2012_24_8_a6/

[1] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991, 350 pp. | MR | Zbl

[2] Raviart P. A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Lecture Notes in Mathematics, 606, Springer-Verlag, New York, 1977, 292–315 | DOI | MR

[3] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[4] Bukina T. A., “Operator alternating-triangular method for three-dimensional static problem in elasticity theory”, Bulletin of the Novosibirsk Computing Center. Ser. Numerical Analysis, 6 (1995), 29–36 | Zbl

[5] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 318 pp. | MR | Zbl

[6] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl