Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry
Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strategy for multigroup neutron transport equation calculation on the basis of quasi-diffusion method, aimed at finding critical parameters of fast reactors, capable to operate in self-adjustable mode, is described. The numerical method is based on Gol’din’s quasi-diffusion method for multigroup neutron transport equation solving. Approximation for all types of high and low orders equations are suggested. The method of high order transport equation solving is based on developed earlier conservative method. Application of quasi-diffusion method for solving eigenvalues problem of neutron transport leads to essential decreasing of required number of source iterations with simultaneous increasing of the accuracy. Computations of parameters of active zone of uranium-plutonium fast reactor of BN-800 type are carried out for 3D $x-y-z$ hexagonal geometry, reflecting structure of the reactor active zone.
Mots-clés : transport equation, quasi-diffusion method
Keywords: self-adjustable neutron-nuclear regime, R-eigenvalue problem, iteration method.
@article{MM_2012_24_8_a3,
     author = {E. N. Aristova and D. F. Baydin},
     title = {Quasidiffusion method realization for fast reactor critical parameters calculation in {3D} hexagonal geometry},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {24},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_8_a3/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - D. F. Baydin
TI  - Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 65
EP  - 80
VL  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_8_a3/
LA  - ru
ID  - MM_2012_24_8_a3
ER  - 
%0 Journal Article
%A E. N. Aristova
%A D. F. Baydin
%T Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry
%J Matematičeskoe modelirovanie
%D 2012
%P 65-80
%V 24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_8_a3/
%G ru
%F MM_2012_24_8_a3
E. N. Aristova; D. F. Baydin. Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry. Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2012_24_8_a3/

[1] Feoktistov L. P., Analiz odnoi kontseptsii fizicheski bezopasnogo reaktora, Preprint IAE-4605/4, 1988

[2] Feoktistov L. P., “Bezopasnost — klyuchevoi moment vozrozhdeniya yadernoi energetiki”, Uspekhi fiz. nauk, 1993, no. 8, 89–102 | DOI

[3] Goldin V. Ya., Anistratov D. Yu., “Reaktor na bystrykh neitronakh v samoreguliruemom neitronno-yadernom rezhime”, Matematicheskoe modelirovanie, 7:10 (1995), 12–32 | MR

[4] Goldin V. Ya., Troschiev Yu. V., Pestryakova G. A., “Ob upravlenii reaktorom na bystrykh neitronakh v samoreguliruemom rezhime 2-go roda”, Dokl. RAN, 369:2 (1999), 170–172 | MR

[5] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., Aristova E. N., “Samoreguliruemyi neitronno-yadernyi rezhim v reaktore s zhestkim spektrom i karbidnym toplivom”, Matematicheskoe modelirovanie, 14:1 (2002), 27–40

[6] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., “Usovershenstvovanie matematicheskoi modeli samoreguliruemogo reaktora”, Matematicheskoe modelirovanie, 14:12 (2002), 39–47

[7] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., Aristova E. N., “Bystryi reaktor na oksidnom uran-plutonievom toplive v samoreguliruemom rezhime”, Atomnaya energiya, 94:3 (2003), 184–190

[8] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., “Upravlenie bystrym reaktorom s oksidnym uran-plutonievym toplivom v samoreguliruemom rezhime bez zapasa reaktivnosti”, Atomnaya energiya, 97:1 (2004), 3–9 | MR

[9] Goldin V. Ya., Troschiev Yu. V., “Upravlenie moschnostyu bystrogo reaktora v samoreguliruemom rezhime i ego pusk”, Atomnaya energiya, 98:1 (2005), 18–24

[10] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1964), 1078–1087 | MR

[11] Goldin V. Ya., “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom”, Sovremennye probl. matem. fiz. i vychisl. matem., Nauka, M., 1982, 340 pp.

[12] Aristova E. N., Goldin V. Ya., “Raschet uravneniya perenosa neitronov sovmestno s uravneniyami kvazidiffuzii v $r-z$ geometrii”, Matematicheskoe modelirovanie, 18:11 (2006), 61–66 | MR | Zbl

[13] Nikolaev M. N., Tsibulya A. M., Tsikunov A. G. i dr., Kompleks programm CONSYST/ABBN — podgotovka konstant BNAB k raschetam reaktorov i zaschity, Otchet GNTs RF FEI No 9865, 1998

[14] Vladimirov V. S., “Chislennoe reshenie kineticheskogo uravneniya dlya sfery”, Vychislitelnaya matematika, 1958, no. 3, 3–33 | Zbl

[15] Aristova E. N., Baidin D. F., Goldin V. Ya., “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl

[16] Aristova E. N., Goldin V. Ya., Dementev A. S., “Raznostnoe reshenie dvumernogo statsionarnogo uravneniya perenosa v peremennykh Vladimirova”, Matematicheskoe modelirovanie, 18:6 (2006), 44–52 | MR | Zbl

[17] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiziki, 5:5 (1965), 938–944 | MR

[18] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Differentsialnye uravneniya, 22:7 (1986), 1141–1148 | MR | Zbl

[19] Aristova E. N., Baidin D. F., “Ekonomichnyi metod resheniya uravneniya perenosa v 2D tsilindricheskoi i 3D geksagonalnoi geometriyakh dlya metoda kvazidiffuzii”, Kompyuternye issledovaniya i modelirovanie, 3:3 (2011), 279–286

[20] Aristova E. N., Baidin D. F., “Ekonomichnost metodov kvazidiffuzii rascheta kriticheskikh parametrov bystrogo reaktora”, Matematicheskoe modelirovanie, 24:4 (2012), 129–136

[21] Anistratov D. Yu., Gol'din V. Ya., “Multilevel Quasidiffusion Methods for Solving Multigroup Neutron Transport k-Eigenvalue Problems in One-Dimensional Slab Geometry”, Nuc. Sci. Eng., 169 (2011), 111–132