Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_6_a6, author = {I. V. Popov and I. V. Fryazinov}, title = {Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--127}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_6_a6/} }
TY - JOUR AU - I. V. Popov AU - I. V. Fryazinov TI - Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids JO - Matematičeskoe modelirovanie PY - 2012 SP - 109 EP - 127 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_6_a6/ LA - ru ID - MM_2012_24_6_a6 ER -
%0 Journal Article %A I. V. Popov %A I. V. Fryazinov %T Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids %J Matematičeskoe modelirovanie %D 2012 %P 109-127 %V 24 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_6_a6/ %G ru %F MM_2012_24_6_a6
I. V. Popov; I. V. Fryazinov. Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids. Matematičeskoe modelirovanie, Tome 24 (2012) no. 6, pp. 109-127. http://geodesic.mathdoc.fr/item/MM_2012_24_6_a6/
[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007 g., g. Kazan, Rossiya), Izd-vo Kazanskogo gos. Universiteta, Kazan, 2007, 223–230
[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR
[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | Zbl
[4] Popov I. V., Fryazinov I. V., “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:5 (2010), 57–66 | Zbl
[5] Popov I. V., Fryazinov I. V., “O metode adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:7 (2010), 121–128 | Zbl
[6] Popov I. V., Fryazinov I. V., “O novom vybore adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:12 (2010), 23–32 | Zbl
[7] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya trekhmernykh uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 23:3 (2011), 89–100 | MR | Zbl
[8] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996, 273 pp.
[9] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980, 352 pp. | MR
[10] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1968, 686 pp.
[11] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl
[12] Liska R., Wendroff B., “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 http://www.math.ntnu.no/conservation | DOI | MR | Zbl