Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain
Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 45-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modification of Cabaret scheme which was adapted for the numerical solution of ideal fluid motion equations in the variables “vorticity–velocity” was proposed. Dissipative and dispersive properties of the numerical algorithm were explored on example of isolated vortex problem. Decaying of homogeneous isotropic turbulence was simulated on grids of varying density. Spectral density of kinetic energy of obtained vortex flows were found to be fitting the “-3” law, which coincides to Kraichnan-Batchelor theory. Structural functions of simulated flows were found to be matching to the specific dimension law.
Keywords: numerical simulation, two-dimensional turbulence.
Mots-clés : Cabaret scheme, incompressible fluid
@article{MM_2012_24_5_a3,
     author = {A. V. Danilin and V. M. Goloviznin},
     title = {Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--60},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/}
}
TY  - JOUR
AU  - A. V. Danilin
AU  - V. M. Goloviznin
TI  - Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 45
EP  - 60
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/
LA  - ru
ID  - MM_2012_24_5_a3
ER  - 
%0 Journal Article
%A A. V. Danilin
%A V. M. Goloviznin
%T Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain
%J Matematičeskoe modelirovanie
%D 2012
%P 45-60
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/
%G ru
%F MM_2012_24_5_a3
A. V. Danilin; V. M. Goloviznin. Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 45-60. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/

[1] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[2] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[3] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy Kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123

[4] Arakawa A., Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow, v. II

[5] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 160–161

[6] Tabeling P., “Two-dimensional turbulence: a physicist approach”, Physics Reports, 362 (2002), 1–62 | MR | Zbl

[7] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 156–161

[8] Kraichnan R. H., Phys. Fluids, 10 (1967), 1417

[9] Batchelor G. K., Phys. Fluids, 1969, Supply II, 266

[10] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl

[11] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh”, Matematicheskoe modelirovanie, 18:11 (2006), 14–30 | MR | Zbl

[12] Alekseenko S. V., Kuibin P. A., Okulov V. L., Vvedenie v teoriyu kontsentrirovannykh vikhrei, Institut teplofiziki SO RAN, Novosibirsk, 2003 | MR | Zbl

[13] Goloviznin V. M., Semenov V. N., Korotkin I. A., Karabasov S. A., “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 66:3 (2007), 439–456 | MR

[14] Hansen M. O. L., “Vorticity-velocity formulation of the 3D Navier-Stokes equations in cylindrical coordinates”, Int. J. Numer. Meth. Fluids, 41 (2003), 29–45 | MR | Zbl

[15] Karabasov S. A., Goloviznin V. A., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA Journal, 45:12 (DEC 2007), 2861–2871

[16] Glotov V. Yu., Goloviznin V. M., “Skhema “Kabare” dlya dvumernoi neszhimaemoi zhidkosti v peremennykh “funktsiya toka–zavikhrennost””, Matematicheskoe modelirovanie, 23:9 (2011), 89–104 | MR | Zbl