Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_5_a3, author = {A. V. Danilin and V. M. Goloviznin}, title = {Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {45--60}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/} }
TY - JOUR AU - A. V. Danilin AU - V. M. Goloviznin TI - Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain JO - Matematičeskoe modelirovanie PY - 2012 SP - 45 EP - 60 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/ LA - ru ID - MM_2012_24_5_a3 ER -
%0 Journal Article %A A. V. Danilin %A V. M. Goloviznin %T Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain %J Matematičeskoe modelirovanie %D 2012 %P 45-60 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/ %G ru %F MM_2012_24_5_a3
A. V. Danilin; V. M. Goloviznin. Cabaret scheme in ``velocity--vorticity'' formulation for numerical modeling of ideal fluid motion in two-dimensional domain. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 45-60. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a3/
[1] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR | Zbl
[2] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[3] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy Kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123
[4] Arakawa A., Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow, v. II
[5] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 160–161
[6] Tabeling P., “Two-dimensional turbulence: a physicist approach”, Physics Reports, 362 (2002), 1–62 | MR | Zbl
[7] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 156–161
[8] Kraichnan R. H., Phys. Fluids, 10 (1967), 1417
[9] Batchelor G. K., Phys. Fluids, 1969, Supply II, 266
[10] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl
[11] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh”, Matematicheskoe modelirovanie, 18:11 (2006), 14–30 | MR | Zbl
[12] Alekseenko S. V., Kuibin P. A., Okulov V. L., Vvedenie v teoriyu kontsentrirovannykh vikhrei, Institut teplofiziki SO RAN, Novosibirsk, 2003 | MR | Zbl
[13] Goloviznin V. M., Semenov V. N., Korotkin I. A., Karabasov S. A., “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 66:3 (2007), 439–456 | MR
[14] Hansen M. O. L., “Vorticity-velocity formulation of the 3D Navier-Stokes equations in cylindrical coordinates”, Int. J. Numer. Meth. Fluids, 41 (2003), 29–45 | MR | Zbl
[15] Karabasov S. A., Goloviznin V. A., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA Journal, 45:12 (DEC 2007), 2861–2871
[16] Glotov V. Yu., Goloviznin V. M., “Skhema “Kabare” dlya dvumernoi neszhimaemoi zhidkosti v peremennykh “funktsiya toka–zavikhrennost””, Matematicheskoe modelirovanie, 23:9 (2011), 89–104 | MR | Zbl