Modeling of thin films surface growth
Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the modeling of thin films surface growth. A short review of existing approaches and models is given. An original model of thin films surface growth is proposed representing stochastic cellular automata and allowing investigation of influence of wafer temperature, deposition rate and time on the morphology parameters of a surface. Comparison simulation results with atomic-force microscopy of experimentally received thin films samples are given.
Keywords: surface growth, thin films, stochastic cellular automata, morphology parameters.
@article{MM_2012_24_5_a2,
     author = {V. A. Vasil'ev and P. S. Chernov},
     title = {Modeling of thin films surface growth},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a2/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
AU  - P. S. Chernov
TI  - Modeling of thin films surface growth
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 35
EP  - 44
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a2/
LA  - ru
ID  - MM_2012_24_5_a2
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%A P. S. Chernov
%T Modeling of thin films surface growth
%J Matematičeskoe modelirovanie
%D 2012
%P 35-44
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a2/
%G ru
%F MM_2012_24_5_a2
V. A. Vasil'ev; P. S. Chernov. Modeling of thin films surface growth. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 35-44. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a2/

[1] Venables J., Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge, 2000, 372 pp.

[2] Oura K., Lifshits V. G., Saranin A. A., Zotov A. V., Katayama M., Surface Science: An Introduction, Springer, 2010, 440 pp.

[3] Hans B., Krause D., Thin Films on Glass, 2${}^{\mathrm{nd}}$ Edition, Springer, 2010, 432 pp.

[4] Mahan J. E., Physical Vapor Deposition of Thin Films, Wiley-Interscience, 2000, 336 pp.

[5] Wilkinson S. F., Edwards D. R., Proc. R. Soc., 17 (1982), 17–31

[6] Kardar M., Parisi G., Zhang Y.-C., Phys. Rev. Lett., 56 (1986), 889 | Zbl

[7] Vicsek M., Vicsek T., “Fractal Growth Models”, ERCIM News, April 1997, no. 29, 36 | MR

[8] Mattos T. G., Moreira J. G., Atman A. P. F., “A discrete method to study stochastic growth equations: a cellular automata perspective”, J. Phys. A: Math. Theor., 40 (2007), 13245 | MR | Zbl

[9] Bhattacharyya P., “Growth of Surfaces Generated by Probabilistic Cellular Automation”, International Journal of Modern Physics C, 1999, no. 1, 165–181

[10] Barabasi A. L., Stanley H. E., Fractal concepts in surface growth, Cambrige University Press, 1995, 388 pp. | MR | Zbl

[11] Russ J. C., The Image Processing Handbook, 6 edition, CRC Press, 2011, 885 pp. | MR