Numerical simulation of the solitary wave generation in a wind-water circular tunnel
Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The short description of the wind-water solitary wave generation in a laboratory wind-water circular tunnel is presented. Mathematical model of this phenomenon in the framework of shallow-water equation system is constructed. Numerical algorithm for solving the system is based on the regularized equations. For the first time a numerical solution of the wind-water solitary wave is obtained based on shallow water equations. Numerical soliton is qualitatively similar to the wind-water soliton, examined in the experiment.
Keywords: wind-water solitary wave, shallow water equations, regularized shallow water equations.
Mots-clés : quasi-gas dynamic equations
@article{MM_2012_24_4_a7,
     author = {T. G. Elizarova and M. A. Istomina and N. K. Shelkovnikov},
     title = {Numerical simulation of the solitary wave generation in a wind-water circular tunnel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a7/}
}
TY  - JOUR
AU  - T. G. Elizarova
AU  - M. A. Istomina
AU  - N. K. Shelkovnikov
TI  - Numerical simulation of the solitary wave generation in a wind-water circular tunnel
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 107
EP  - 116
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_4_a7/
LA  - ru
ID  - MM_2012_24_4_a7
ER  - 
%0 Journal Article
%A T. G. Elizarova
%A M. A. Istomina
%A N. K. Shelkovnikov
%T Numerical simulation of the solitary wave generation in a wind-water circular tunnel
%J Matematičeskoe modelirovanie
%D 2012
%P 107-116
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_4_a7/
%G ru
%F MM_2012_24_4_a7
T. G. Elizarova; M. A. Istomina; N. K. Shelkovnikov. Numerical simulation of the solitary wave generation in a wind-water circular tunnel. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 107-116. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a7/

[1] Levin B. V., Nosov M. A., Fizika tsunami, Yanus-K, M., 2005, 360 pp.

[2] Glebova O. A., Kravtsov Al. V., Shelkovnikov N. K., “Eksperimentalnoe i chislennoe issledovanie vetrovykh uedinennykh voln na vode”, Izv. Akad. nauk, seriya fizicheskaya, 66:12 (2002), 1727–1729

[3] Shelkovnikov N. K., “Vynuzhdennyi soliton v zhidkostyakh”, Pisma v ZhETF, 82:10 (2005), 720–723

[4] Kravtsov Al. N., Kravtsov V. V., Shelkovnikov N. K., “Chislennyi eksperiment po modelirovaniyu uedinennykh voln na poverkhnosti zhidkosti v koltsevom kanale”, ZhVM i MF, 44:3 (2004), 559–561 | MR | Zbl

[5] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 696 pp. | MR

[6] Volobuev A. N., Koshev V. I., Petrov E. S., Biofizicheskie printsipy gemodinamiki, M., 2009, 183 pp. | Zbl

[7] Elizarova T. G., Bulatov O. V., “Regularized shallow water equations and a new method of simulation of the open channel flows”, Comp. Fluids, 2011, no. 46, 206–211 | DOI | MR | Zbl

[8] Bulatov O. V., Elizarova T. G., “Regulyarizovannye uravneniya melkoi vody i effektivnyi metod chislennogo modelirovaniya techenii v neglubokikh vodoemakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 170–184 | MR | Zbl

[9] Elizarova T. G., Zlotnik A. A., Nikitina O. V., Modelirovanie odnomernykh techenii melkoi vody na osnove regulyarizovannykh uravnenii, Preprint IPM im. M. V. Keldysha, No 33, 2011, 36 pp.

[10] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[11] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, Moskva–Izhevsk, 2009

[12] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR