To the theory vortex dynamo in the astrophysical disk with a gyrotropic turbulence
Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 31-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of formation large and mesoscale coherent vortex structures in a gyrotropic turbulence of the rotaried non-magnetic astrophysical disk surveyed, which one did not yield earlier to examination, as the action of an inverse stage of energy on changes of aircraft attitude of a turbulence of this space object was leave outed. The developed phenomenological theory of a disk mirror — asymmetrical turbulence has filled a gap due to insert in model of the mechanism vortex dynamo, accountable (at suitable definition of a tensor of shift turbulent stresses of Reynolds) for energy flow from shallow vortexes to large, which one can be interpreted as effect of negative viscosity. The insert of this device in model of a gyrotropic turbulence gives in modification of rheological relations for a turbulent flow of heat and tensor of turbulent stresses, and also to some number of the padding developmental equations for quantities such as turbulent energy, velocity of a dissipation, average vorticity and average vortex helicity. The role of a vortex helicity in origin of an inverse energy stage and bound with it process of oscillation of power-intensive coherent vortex formations incipient in a gyrotropic turbulence at major Reynolds numbers is considered. It is drawn a conclusion, that on a measure of more and more reliable endorsement in numerical experiments of the concept of an inverse stage of energy in a three-dimensional gyrotropic turbulence, registration of effect vortex dynamo, influential on synergetic structuring of space matter in the astrophysical non-magneticdisc, gains the relevant role at its model operation.
Keywords: continuum mechanics, dynamo.
Mots-clés : gyrotropic turbulence
@article{MM_2012_24_4_a2,
     author = {A. V. Kolesnichenko},
     title = {To the theory vortex dynamo in the astrophysical disk with a gyrotropic turbulence},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--56},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a2/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - To the theory vortex dynamo in the astrophysical disk with a gyrotropic turbulence
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 31
EP  - 56
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_4_a2/
LA  - ru
ID  - MM_2012_24_4_a2
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T To the theory vortex dynamo in the astrophysical disk with a gyrotropic turbulence
%J Matematičeskoe modelirovanie
%D 2012
%P 31-56
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_4_a2/
%G ru
%F MM_2012_24_4_a2
A. V. Kolesnichenko. To the theory vortex dynamo in the astrophysical disk with a gyrotropic turbulence. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 31-56. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a2/

[1] Brown G. L., Roshko A., “On density effects and large structures in turbulent mixing layers”, J. Fluid Mech., 64 (1974), 775–816 | DOI

[2] Crow S. C., Champagne F. H., “Orderly structures in jet turbulence”, J. Fluid Mech., 48 (1971), 547–591 | DOI

[3] Rabinovich M. I., Suschik M. M., “Regulyarnaya i khaoticheskaya dinamika struktur v techeniyakh zhidkosti”, UFN, 160:1 (1990), 1–64 | DOI | MR

[4] Klimontovich Yu. L., Vvedenie v fiziku otkrytykh sistem, TOO «Yanus-K», M., 2002, 284 pp.

[5] Khlopkov Yu. I., Zharov V. A., Gorelov S. L., Kogerentnye struktury v turbulentnom pogranichnom sloe, MFTI, M., 2002, 267 pp.

[6] Kolesnichenko A. V., Marov M. Ya., “Termodinamicheskaya model MGD-turbulentnosti i nekotorye ee prilozheniya k akkretsionnym diskam”, Astron. Vestnik, 42:3 (2008), 1–50 | MR

[7] Van Daik M., Albom dvizhenii zhidkosti i gaza, Mir, M., 1986

[8] Frish U., Turbulentnost. Nasledie Kolmogorova, Fazis, M., 1998, 343 pp.

[9] Monin A. S., Yaglom A. M., Statisticheskaya gidrodinamika, v. 2, Gidrometeoizdat, SPb., 1996, 742 pp.

[10] Kolmogorov A. N., “Lokalnaya struktura turbulentnosti v neszhimaemoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Doklady AN SSSR, 30 (1941), 299–303

[11] Kolmogorov A. N., “Utochnenie predstavlenii o lokalnoi strukture turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri bolshikh chislakh Reinoldsa”, Mecanique de la turbulence, Colloq. Intern. CNRS (Marseille, aout–sept. 1961), Paris, 1962, 447–458 (Na rus. i fr. yaz.) | MR

[12] Obukhov A. M., “O raspredelenii energii v spektre turbulentnogo potoka”, Izv. AN SSSR. Ser. geografii i geofiziki, 5:4 (1941), 453–466

[13] Vainshtein S. I., Zeldovich Ya. B., Ruzmaikin A. A., Turbulentnoe dinamo v astrofizike, Nauka, M., 1980, 352 pp.

[14] Krauze F., Redler K.-Kh., Magnitnaya gidrodinamika srednikh polei i teoriya dinamo, Mir, M., 1984, 315 pp.

[15] Zeldovich Ya. B., Ruzmaikin A. A., Sokolov D. D., Magnitnye polya v astrofizike, NITs «Regulyarnaya i khaoticheskaya dinamika». Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2006, 386 pp.

[16] Moffatt H. K., “The degree of knottedness of tangled vortex lines”, J. Fluid Mech., 35 (1969), 117–129 | DOI | Zbl

[17] Steenbeck M., Krause F., Radler K.-H., “A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces”, Z. Naturforsch. A, 21 (1966), 369–376

[18] Seffmen F. Dzh., Dinamika vikhrei, Nauchnyi Mir, M., 2000, 375 pp.

[19] Arnold V. I., Khesin B. A., Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007, 392 pp.

[20] Moffat G., Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980, 339 pp.

[21] Parker E., Kosmicheskie magnitnye polya: ikh obrazovanie i proyavleniya, v. 2, Mir, M., 1982, 479 pp.

[22] Brandenburg A., Dobler W., Subramanian K., “Magnetic helicity in stellar dynamos: new numerical experiments”, Astronomische Nachrichten, 323 (2002), 99–122 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[23] Brissaund A., Frisch U., Leorat J., Lessieur M., Mazure A., “Helicity cascade in fully developed turbulence”, Phys. Fluids, 16 (1973), 1366–1367 | DOI

[24] Lesieur M., Turbulence in Fluids, 4th edition, Springer, 2008, 558 pp. | MR | Zbl

[25] Pouquet A., Mininni P. D., The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics, 2009, 18 pp., submitted to Phys. Fluids, arXiv: 0910.4522v1 [physics.flu-dyn] | MR

[26] Mininni P. D., Alexakis A., Pouquet A., “Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers”, Phys. Fluids, 21 (2009), 015108 | DOI | Zbl

[27] Mininni P. D., Pouquet A., “Helicity cascades in rotating turbulence”, Phys. Rev. E, 79 (2009), 026304 | DOI

[28] Mininni P. D., Pouquet A., “Rotating helical turbulence. I: Global evolution and spectral behavior”, Phys. Rev. E, 2009 (to appear) , 9 pp., arXiv: 0909.1272 [physics.flu-dyn]

[29] Mininni P. D., Pouquet A., “Helical rotating turbulence. II: Intermittency, scale invariance and structures”, Phys. Rev. E, 2009 (to appear) , 11 pp., arXiv: 0909.1275 [physics.flu-dyn]

[30] Kraichnan R. H., “Helical turbulence and absolute equilibrium”, J. Fluid Mech., 59 (1973), 745–752 | DOI | Zbl

[31] Kraichnan R. H., “Diffusion of passive-scalar and magnetic fields by helical turbulence”, J. Fluid. Mech., 77 (1976), 753–774 | DOI

[32] Moiseev S. S., Sagdeev R. Z., Tur A. V., Khomenko G. A., Yanovskii V. V., “Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoi turbulentnosti”, ZhETF, 85:6(12) (1983), 1979–1987 | MR

[33] Moiseev S. S., Rutkevich P. B., Tur A. V., Yanovskii V. V., “Vikhrevoe dinamo v konvektivnoi srede so spiralnoi turbulentnostyu”, ZhETF, 94:2 (1988), 144–153

[34] Moiseev S. S., Sagdeev R. Z., Tur A. V., Khomenko G. A., Shukurov A. M., “Fizicheskii mekhanizm usileniya vikhrevykh vozmuschenii v atmosfere”, Doklady AN SSSR, 273:3 (1983), 549–552

[35] Moiseev S. S., Chkhetiani O. G., “The helical scaling of turbulence”, JETP, 110:7 (1996), 357–371 | MR

[36] Branover H., Moiseev S. S., Golbraikh E., Eidelman A., Turbulence and Structures: Chaos, Fluctuations, and Helical Self-Organization in Nature and Laboratory, Academic Press, San Diego, 1999, 270 pp.

[37] Starr V., Fizika yavlenii s otritsatelnoi vyazkostyu, Mir, M., 1971, 259 pp.

[38] Monin A. S., Polubarinova-Kochina P. Ya., Khlebnikov V. I., Kosmologiya, gidrodinamika, turbulentnost: A. A. Fridman i razvitie ego nauchnogo naslediya, Nauka, M., 1989, 326 pp. | MR | Zbl

[39] Vergassola M., Gama S., Frisch U., “Proving the existence of negative isotropic eddy viscosity”, NATO-ASI: Solar and Planetary Dynamos, eds. M. R. E. Proctor, P. C. Mathews, A. M. Rucklidge, Cambridge University Press, Cambridge, 1993, 321–327 | MR

[40] Sivashinsky G. I., Frenkel A. L., “On negative eddy viscosity under conditions of isotropy”, Phys. Fluids A, 4 (1992), 1608–1610 | DOI | MR | Zbl

[41] Gama S., Vergassola M., Frisch U., “Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics”, J. Fluid. Mech., 260 (1994), 95–126 | DOI | MR

[42] Bodenheimer P., “Angular momentum evolution of young stars and disks”, Ann. Rev. Astron. Astrophys., 33 (1995), 199–238 | DOI

[43] Klahr H. H., Bodenheimer P., “Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability”, Astrophys. J., 582 (2003), 869–892 | DOI

[44] Berezin Yu. A., Zhukov V. P., “Konvektivnaya neustoichivost v srede so spiralnoi turbulentnostyu”, Izv. RAN, MZhG, 1990, no. 6, 61–66

[45] Berezin Yu. A., Trofimov V. M., “Generatsiya krupnomasshtabnykh vikhrei pod deistviem neravnovesnoi turbulentnosti”, Izv. RAN, MZhG, 1996, no. 1, 47–55 | MR | Zbl

[46] Levina G. V., “Parametrizatsiya spiralnoi turbulentnosti v chislennykh modelyakh intensivnykh atmosfernykh vikhrei”, Dokl. RAN, 411:3 (2006), 400–404

[47] Dubrulle B., Valdettaro L., “Consequences of rotation in energetics of accretion disks”, Astron. Astrophys., 263 (1992), 387–400

[48] Smith L. M., Chasnov J., Waleffe F., “Crossover from two- to three-dimensional turbulence”, Phys. Rev. Lett., 77 (1996), 25467–2470

[49] Kolesnichenko A. V., Marov M. Ya., Turbulentnost i samoorganizatsiya: Problemy modelirovaniya kosmicheskikh i prirodnykh sred, BINOM. Laboratoriya znanii, M., 2009, 632 pp.

[50] Lin C. C., Shu F. H.-S., “Density wave theory of spiral structure”, Astrophysics and General Relativity, 2 (1968), 236–329

[51] de Groot S., Mazur P., Neravnovesnaya termodinamika, Mir, M., 1964, 456 pp.

[52] Kolesnichenko A. V., “Sinergeticheskii podkhod k opisaniyu razvitoi turbulentnosti”, Astron. Vestnik, 36:2 (2002), 121–139 | MR

[53] Prigozhin I., Stengers I., Poryadok iz khaosa. Novyi dialog cheloveka s prirodoi, Progress, M., 1986, 310 pp.

[54] Khapaev A. A., “Generatsiya vikhrevykh struktur v atmosfere pod deistviem spiralnoi turbulentnosti konvektivnogo proiskhozhdeniya”, Izv. AN SSSR. Fizika atmosfery i okeana, 38:3, 331–336 | MR

[55] Nikolaevskii V. N., “Prostranstvennoe osrednenie i teoriya turbulentnosti”, Vikhri i volny, Mir, M., 1984, 266–335 | MR

[56] Reynolds O., “On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion”, Phil. Trans. Royal Soc. London A, 186 (1894), 123–161 | DOI

[57] Rüdiger G., “Reynolds stresses and differential rotation. I: On recent calculations of zonal fluxes in slowly rotating stars”, Geophysical and Astrophysical Fluid Dynamics, 16 (1980), 239–261 | DOI

[58] Rüdiger G., “On negative eddy viscosity in MHD turbulence”, Magnetic Hydrodynamics (Riga), 1980, no. 1, 3–14 | MR

[59] Rüdiger G., “On turbulent heat transport in rotating convective zones”, Astron. Nachr., 303 (1982), 293–303 | DOI | MR

[60] Berezin Yu., Trofimov V. M., “A model of non-equilibrium turbulence with an asymmetric stress. Application to the problems of thermal convection”, Continuum Mech. Thermodynamics, 7 (1995), 415–437 | DOI | MR | Zbl

[61] Krause F., Rüdiger G., “On the Reynolds stresses in mean-field hydrodynamics. I: Incompressible homogeneous isotropic turbulence”, Astron. Nachr., 295:2 (1974), 93–99 | DOI | Zbl

[62] Krause F., Rüdiger G., “On the Reynolds stresses in mean-field hydrodynamics. II: Two-dimensional turbulence and the problem of negative viscosity”, Astron. Nachr., 295:4 (1974), 185–193 | DOI

[63] Rüdiger G., “On the Reynolds stresses in mean-field hydrodynamics. III: Two-dimensional turbulence and the problem of differential rotation”, Astron. Nachr., 295:5 (1974), 229–235 | DOI | MR

[64] Kolesnichenko A. V., “K modelirovaniyu spiralnoi turbulentnosti v astrofizicheskom nemagnitnom diske”, Astron. Vestnik, 45:3 (2011), 253–272

[65] Yoshizava A., “Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields”, Phys. Fluids B, 2:7 (1990), 1589–1600 | DOI

[66] Ferrari C., “On the differential equations of turbulent flow”, Mekhanika sploshnoi sredy i rodstvennye problemy analiza, Nauka, M., 1972, 336 pp.

[67] Nikolaevskii V. N., “Tenzor napryazhenii i metod osredneniya v mekhanike sploshnykh sred”, PMM, 39:1 (1975), 374–379

[68] Nikolaevskiy V. N., Angular Momentum in Geophysical Turbulence, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, 243 pp. | Zbl

[69] Kolesnichenko A. V., Marov M. Ya., “Rol gidrodinamicheskoi spiralnosti v evolyutsii protoplanetnogo turbulentnogo diska”, Matematicheskoe modelirovanie, 20:10 (2007), 99–125 | MR

[70] Kichatinov L. L., Rüdiger G., “$\Lambda$-effect and differential rotation in stellar convection zones”, Astron. Astrophys., 276 (1993), 96–102

[71] Heinloo J., “Setup of turbulence mechanics accounting for a preferred orientation of eddy rotation”, Concepts of physics, 5:2 (2008), 205–218 | DOI

[72] Marov M. Ya., Kolesnichenko A. V., Makalkin A. B., Dorofeeva V. A., Ziglina I. N., “Ot protosolnechnogo oblaka k planetnoi sisteme: Model rannei evolyutsii gazopylevogo diska”, Problemy zarozhdeniya i evolyutsii biosfery, Kollektivnaya monografiya, ed. E. M. Galimov, Knizhnyi dom «Librokom», M., 2008, 223–275, 552 pp.

[73] Ditlevsen P., Giuliani P., “Dissipation in helical turbulence”, Phys. Fluids, 13 (2001), 3508–3509 | DOI

[74] Chen Q., Chen S., Eyink G., “The joint cascade of energy and helicity in three-dimensional turbulence”, Physics of Fluids, 15:2 (2003), 361–374 | DOI | MR

[75] Andre J. D., Lesieur M., “Evolution of high Reynolds number isotropic three-dimensional turbulence; influence of helicity”, J. Fluid Mech., 81 (1977), 187–208 | DOI

[76] Moffatt H. K., Tsinober A., “Helicity in laminar and turbulent flow”, Ann. Rev. of Fluid Mech., 24 (1992), 281–312 | DOI | MR | Zbl

[77] Andre J. C., Lesieur M., “Influence of helicity on high Reynolds number isotropic turbulence”, J. Fluid Mech., 81 (1977), 187–207 | DOI | Zbl

[78] Borue J., Orszag S. A., “Spectra in helical three-dimensional isotropic turbulence”, Phys. Rev. E, 55 (1997), 7005–7009 | DOI | MR

[79] Tsinober A., Levitch E., “On the helical nature of three-dimensional coherent structures in turbulent flows”, Phys. Letters A, 99 (1983), 321–324 | DOI

[80] Moffatt H. K., “Geophysical and astrophysical turbulence”, Advances in turbulence, eds. G. Comte-Bellot, J. Mathieu, Springer-Verlag, 1986, 228–244 | MR

[81] Shtilman L., Levich E., Orszag S. A., Pelz R. B., Tsinober A., “On the role of helicity in complex fluid flows”, Phys. Let. A, 113 (1985), 32–37 | DOI

[82] Kerr B. W., Darkow G. L., “Storm-relative winds and helicity in the tornadic thunderstorm environment”, Weath. and Forecast, 11 (1996), 489–496 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[83] Rogers M. M., Moin P., “The structure of the vorticity field in homogeneous turbulent flows”, J. Fluid Mech., 176 (1987), 33–66 | DOI

[84] Rogers M. M., Moin P., “Helicity fluctuations in incompressible turbulent flows”, Phys. Fluids, 30 (1987), 2662–2671 | DOI

[85] Zhou Y., “A phenomenological treatment of rotating turbulence”, Phys. Fluids, 7 (1995), 2092–2099 | DOI

[86] Smith L. M., Waleffe F., “Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence”, Phys. Fluids, 11 (1999), 1608–1622 | DOI | MR | Zbl

[87] Sedov L. I., Mysli ob uchenykh i nauke proshlogo i nastoyaschego, Nauka, M., 1973, 118 pp.