Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem
Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the problem of determining the point on a heart surface (projection) closest to the arrhythmogenic focus that is located inside the heart is consider. Localization of this point is important for a successful cardiac ablation procedure. The projection is calculated by solving the inverse problem of electrocardiography, which is the Cauchy problem for the Laplace equation. To solve the inverse problem of electrocardiography the method of boundary integral equations and the method of Tikhonov regularization are used. Examples of the test calculations and results of processing real electrophysiological data are given.
Keywords: cardiac arrhythmias diagnostics, inverse problem of electrocardiography, Cauchy problem for Laplace equation, boundary integral equations method, Tikhonov regularization method, hypersingular integral equations.
@article{MM_2012_24_4_a1,
     author = {A. M. Denisov and E. V. Zakharov and A. V. Kalinin},
     title = {Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a1/}
}
TY  - JOUR
AU  - A. M. Denisov
AU  - E. V. Zakharov
AU  - A. V. Kalinin
TI  - Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 22
EP  - 30
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_4_a1/
LA  - ru
ID  - MM_2012_24_4_a1
ER  - 
%0 Journal Article
%A A. M. Denisov
%A E. V. Zakharov
%A A. V. Kalinin
%T Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem
%J Matematičeskoe modelirovanie
%D 2012
%P 22-30
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_4_a1/
%G ru
%F MM_2012_24_4_a1
A. M. Denisov; E. V. Zakharov; A. V. Kalinin. Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 22-30. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a1/

[1] Stephen Huang S. K., Wood M. A., Catheter Ablation of Cardiac Arrhythmias, Elsevier, 2010

[2] Barr R., Spek M., Resheniya obratnoi zadachi, vyrazhennye neposredstvenno v forme potentsiala, Meditsina, M., 1979

[3] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Primenenie metoda regulyarizatsii Tikhonova dlya chislennogo resheniya obratnoi zadachi elektrokardiografii”, Vestn. MGU, ser. 15, Vychisl. matem. i kibernetika, 2008, no. 2, 5–10 | MR

[4] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl

[5] Zakharov E. V., Kalinin A. V., “Chislennoe reshenie trekhmernoi zadachi Dirikhle v kusochno-odnorodnoi srede metodom granichnykh integralnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1197–1206 | MR | Zbl

[6] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennoe reshenie obratnoi zadachi elektrokardiografii dlya sredy s kusochno-postoyannym koeffitsientom elektroprovodnosti”, Zh. vychisl. matem. i matem. fiziki, 2010, no. 7, 1233–1239 | MR | Zbl

[7] Kalinin A. V., “Iteratsionnyi algoritm resheniya obratnoi zadachi elektrokardiografii dlya sredy s kusochno postoyannym koeffitsientom elektroprovodnosti”, Prikladnaya matematika i informatika, 34, Izd-vo MGU, 2010, 35–40

[8] Zakharov E. V., Davydov A. G., Khaleeva I. V., “Integralnye uravneniya s yadrami tipa Adamara v zadachakh difraktsii”, Aktualnye voprosy prikladnoi matematiki, Izd-vo MGU, M., 1989, 118–127 | MR

[9] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[10] Sutradhar A., Paulino G. H., Gray L. J., Symmetric Galerkin Boundary Element Method, Springer, 2008 | MR

[11] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1998 | MR

[12] Vainikko G. M., Lifanov I. K., Poltavskii L. N., Chislennye metody v gipersingulyarnykh integralnykh uravneniyakh i ikh prilozheniya, Yanus, M., 2001, 508 pp.