The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time
Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 70-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of the estimation of the yield of the pool of renewable investment projects. The formulation of the Cantor–Lippman model for continuous time is described in this paper. The result that allows to classify pools of investment projects into the arbitration, the ineffective and the standard is proved. The estimation of the yield is found for each of the classes. The classification of pools and their yield calculation is based on the functions of the upper envelope of the Laplace transform of the investment projects cash flow functions. It is shown that for the case of a standard pool the yield can be obtained by computing the minimal positive root of the upper envelope. The example that demonstrates how the cooperation of developed and emerging economies can be analyzed in the investment projects framework is described.
Keywords: the yield of the pool of investment projects, the Cantor–Lippman model.
@article{MM_2012_24_3_a5,
     author = {M. P. Vashchenko and A. A. Shananin},
     title = {The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {70--86},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a5/}
}
TY  - JOUR
AU  - M. P. Vashchenko
AU  - A. A. Shananin
TI  - The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 70
EP  - 86
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_3_a5/
LA  - ru
ID  - MM_2012_24_3_a5
ER  - 
%0 Journal Article
%A M. P. Vashchenko
%A A. A. Shananin
%T The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time
%J Matematičeskoe modelirovanie
%D 2012
%P 70-86
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_3_a5/
%G ru
%F MM_2012_24_3_a5
M. P. Vashchenko; A. A. Shananin. The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 70-86. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a5/

[1] Fisher I., The rate of interest, Macmillan Co., New York, 1907

[2] Fisher I., The theory of interest, Macmillan Co., New York, 1930

[3] Hirshleifer J., “On the theory of optimal decision”, J. of political economy, 1958, no. 66, 229–239

[4] Solow R. M., Capital theory and the rate of return, North Holland Press, Amsterdam, 1963, 98 pp.

[5] Gale D., “On the theory of interest”, The american mathematical monthly, 80:8 (1973), 853–868 | DOI | MR | Zbl

[6] Dorfman R., “The meaning of internal rates of return”, J. of Finance, 36:5 (1981), 1011–1021 | DOI

[7] Cantor D. G., Lipman S. A., “Investment selection with imperfect capital markets”, Econometrica, 51:4 (1983), 1121–1144 | DOI | MR | Zbl

[8] Sonin I. M., “Growth rate, internal rates of return and turn pikes in an investment model”, Economic theory, 5 (1995), 383–400 | DOI | MR | Zbl

[9] Presman E. L., Sonin I. M., Growth rate, internal rates of return and financial bubbles, Working paper 103, CEMI Russian Academy of Sciences, Moscow, 2000, 33 pp.

[10] Cantor D. G., Lipman S. A., “Optimal Investment Selection with a Multitude of Projects”, Econometrica, 63:5 (1995), 1231–1240 | DOI | Zbl

[11] Belenkii V. Z., Ekonomicheskaya dinamika: analiz investitsionnykh proektov v ramkakh lineinoi modeli Neimana–Geila, Preprint 137, TsEMI RAN, M., 2002, 78 pp.

[12] Belenkii V. Z., Optimizatsionnye modeli ekonomicheskoi dinamiki. Ponyatiinyi apparat. Odnomernye modeli. Bellmanovskii podkhod, Nauka, M., 2007, 259 pp.

[13] Bikkinina L. I., Shananin A. A., “K teorii dokhodnosti investitsionnykh proektov v usloviyakh nesovershennogo finansovogo rynka”, XLVI konferentsiya MFTI, 136–137

[14] Vaschenko M. P., “Issledovanie uravneniya Bellmana v odnoi zadache optimalnogo investirovaniya”, Sb. statei molodykh uchenykh fakulteta VMiK MGU, 3, Izd. otdel f-ta VMiK MGU, M., 2006, 32–43

[15] Vaschenko M. P., “Otsenka dokhodnosti investitsionnykh proektov v usloviyakh neopredelennosti”, Matematicheskoe modelirovanie, 21:3 (2009), 18–30

[16] Obrosova N. K., Rudeva A. V., Flerova A. Yu., Shananin A. A., Otsenka vliyaniya gosudarstvennoi energeticheskoi politiki na perekhodnye protsessy v ekonomike Rossii, Preprint, VTs RAN, M., 2007, 95 pp.

[17] Obrosova N. K., Shananin A. A., “Issledovanie alternativnykh variantov razvitiya ekonomiki i energetiki Rossii s pomoschyu matematicheskoi modeli”, Matematicheskoe modelirovanie, 16:2 (2004), 20

[18] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 623 pp. | MR