Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_3_a4, author = {S. D. Algazin}, title = {Numerical solution of the problem of {Steklov}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--69}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/} }
S. D. Algazin. Numerical solution of the problem of Steklov. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 65-69. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/
[1] Algazin S. D., Chislennye algoritmy klassicheskoi matematicheskoi fiziki, Dialog-MIFI, M., 2010, 240 pp.
[2] Stekloff W., “Sur les problèmes fondamentaux de la physique mathèmatique”, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490 | MR | Zbl
[3] Bandle C., Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl
[4] Payne L., “Isoperimetric Inequalities and Their Applications”, SIAM Rev., 9:3 (1967), 453–488 | DOI | MR | Zbl
[5] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. ; 2-е изд., испр. и доп., ред. А. Д. Брюно, РХД, М.–Ижевск, 2002, 847 с. | MR
[6] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954, 328 pp.
[7] Zhiruar A., Polterovich I., “Ob otsenkakh Khersha–Peina–Shiffera dlya sobstvennykh znachenii zadachi Steklova”, Funktsionalnyi analiz i ego prilozheniya, 44:2 (2010), 33–47 | DOI | MR