Numerical solution of the problem of Steklov
Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Steklov's problem in flat area with smooth boundary is considered. The numerical algorithm without saturation which allows to calculate 3000 eigenvalues with 9 signs after a comma is constructed.
Keywords: Steklov's problem, numerical algorithm without saturation.
@article{MM_2012_24_3_a4,
     author = {S. D. Algazin},
     title = {Numerical solution of the problem of {Steklov}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - Numerical solution of the problem of Steklov
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 65
EP  - 69
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/
LA  - ru
ID  - MM_2012_24_3_a4
ER  - 
%0 Journal Article
%A S. D. Algazin
%T Numerical solution of the problem of Steklov
%J Matematičeskoe modelirovanie
%D 2012
%P 65-69
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/
%G ru
%F MM_2012_24_3_a4
S. D. Algazin. Numerical solution of the problem of Steklov. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 65-69. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a4/

[1] Algazin S. D., Chislennye algoritmy klassicheskoi matematicheskoi fiziki, Dialog-MIFI, M., 2010, 240 pp.

[2] Stekloff W., “Sur les problèmes fondamentaux de la physique mathèmatique”, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490 | MR | Zbl

[3] Bandle C., Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl

[4] Payne L., “Isoperimetric Inequalities and Their Applications”, SIAM Rev., 9:3 (1967), 453–488 | DOI | MR | Zbl

[5] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. ; 2-е изд., испр. и доп., ред. А. Д. Брюно, РХД, М.–Ижевск, 2002, 847 с. | MR

[6] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954, 328 pp.

[7] Zhiruar A., Polterovich I., “Ob otsenkakh Khersha–Peina–Shiffera dlya sobstvennykh znachenii zadachi Steklova”, Funktsionalnyi analiz i ego prilozheniya, 44:2 (2010), 33–47 | DOI | MR