Research of the demand for consumer loans and money
Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 84-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a Ramsey-type model taking into account the demand for consumer credits and the liquidity constraints. For the solution with the finite planning horizon, the existence of intermidiate turnpike has been proved. It is also proved that the intermidiate turnpike is a solution for problem with infinite problem.
Keywords: synthesys of optimal control, intermidiate turnpike.
@article{MM_2012_24_2_a4,
     author = {I. F. Gimaltdinov},
     title = {Research of the demand for consumer loans and money},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {84--98},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/}
}
TY  - JOUR
AU  - I. F. Gimaltdinov
TI  - Research of the demand for consumer loans and money
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 84
EP  - 98
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/
LA  - ru
ID  - MM_2012_24_2_a4
ER  - 
%0 Journal Article
%A I. F. Gimaltdinov
%T Research of the demand for consumer loans and money
%J Matematičeskoe modelirovanie
%D 2012
%P 84-98
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/
%G ru
%F MM_2012_24_2_a4
I. F. Gimaltdinov. Research of the demand for consumer loans and money. Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 84-98. http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/

[1] Belenkii V.Z., Optimizatsionnye modeli ekonomicheskoi dinamiki: ponyatiinyi apparat, odnomernye modeli, Nauka, M., 2007

[2] Ramsey F.P., “A mathematical theory of saving”, The Economic Journal, 38:152 (1928), 543–559 | DOI

[3] Guriev S.M., “Model formirovaniya sberezhenii i sprosa na dengi”, Matematicheskoe modelirovanie, 6:7 (1994), 15–40 | MR

[4] Rudeva A.V., Shananin A.A., “Sintez upravleniya v modifitsirovannoi modeli Ramseya s uchetom ogranicheniya likvidnosti”, Differentsialnye uravneniya, 45:12 (2009)

[5] Plotnikov V.I., Sumin M.I., “Neobkhodimye usloviya v negladkoi zadache optimalnogo upravleniya”, Matematicheskie zametki, 32:2 (1982)

[6] Samuelson P.A., “A catenary turnpike theorem involving consumption and golden rule”, American economic review, 55 (1965)

[7] Samuelson P.A., “The two-part golden rule deduced as the asymptotic turnpike of catenary motions”, Western economic journal, 6 (1968)

[8] Cass D., “Optimum growth in an aggregative model of capital accumulation, a turnpike theorem”, Econometrica, 34 (1966) | DOI

[9] Dmitruk A.V., Kuzkina N.V., “Teorema suschestvovaniya v zadache optimalnogo upravleniya na beskonechnom intervale vremeni”, Matematicheskie zametki, 78:4 (2005)

[10] Fleming Wendell H., Mete Soner H., Controlled Markov Processes and Viscosity Solutions, Springer, 2006 | MR