Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_2_a4, author = {I. F. Gimaltdinov}, title = {Research of the demand for consumer loans and money}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {84--98}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/} }
I. F. Gimaltdinov. Research of the demand for consumer loans and money. Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 84-98. http://geodesic.mathdoc.fr/item/MM_2012_24_2_a4/
[1] Belenkii V.Z., Optimizatsionnye modeli ekonomicheskoi dinamiki: ponyatiinyi apparat, odnomernye modeli, Nauka, M., 2007
[2] Ramsey F.P., “A mathematical theory of saving”, The Economic Journal, 38:152 (1928), 543–559 | DOI
[3] Guriev S.M., “Model formirovaniya sberezhenii i sprosa na dengi”, Matematicheskoe modelirovanie, 6:7 (1994), 15–40 | MR
[4] Rudeva A.V., Shananin A.A., “Sintez upravleniya v modifitsirovannoi modeli Ramseya s uchetom ogranicheniya likvidnosti”, Differentsialnye uravneniya, 45:12 (2009)
[5] Plotnikov V.I., Sumin M.I., “Neobkhodimye usloviya v negladkoi zadache optimalnogo upravleniya”, Matematicheskie zametki, 32:2 (1982)
[6] Samuelson P.A., “A catenary turnpike theorem involving consumption and golden rule”, American economic review, 55 (1965)
[7] Samuelson P.A., “The two-part golden rule deduced as the asymptotic turnpike of catenary motions”, Western economic journal, 6 (1968)
[8] Cass D., “Optimum growth in an aggregative model of capital accumulation, a turnpike theorem”, Econometrica, 34 (1966) | DOI
[9] Dmitruk A.V., Kuzkina N.V., “Teorema suschestvovaniya v zadache optimalnogo upravleniya na beskonechnom intervale vremeni”, Matematicheskie zametki, 78:4 (2005)
[10] Fleming Wendell H., Mete Soner H., Controlled Markov Processes and Viscosity Solutions, Springer, 2006 | MR