Numerical simulation of hydrodynamics instabilities evolution on multiprocessor systems
Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 17-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective three-dimensional parallel algorithm using a combination of MPI and OpenMP for numerical simulation of hydrodynamic instabilities evolution on the basis of schemes of high order on multiprocessor systems with hybrid architecture has been proposed. A research of the combined techniques of parallelization in comparison with pure MPI is produced. Using the realized numerical algorithm the calculations of two typical problems of hydrodynamic instabilities evolution (Richtmyer-Meshkov and Rayleigh-Taylor) has been produced. For the problem of Rayleigh-Taylor instability a clear Kolmogorov spectrum is received.
Keywords: hydrodynamic instability, high order accuracy scheme, parallel programming, MPI, OpenMP, Richtmyer-Meshkov instabilty, Rayleigh-Taylor instabilty.
@article{MM_2012_24_2_a1,
     author = {V. S. Chevanin},
     title = {Numerical simulation of hydrodynamics instabilities evolution on multiprocessor systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_2_a1/}
}
TY  - JOUR
AU  - V. S. Chevanin
TI  - Numerical simulation of hydrodynamics instabilities evolution on multiprocessor systems
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 17
EP  - 32
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_2_a1/
LA  - ru
ID  - MM_2012_24_2_a1
ER  - 
%0 Journal Article
%A V. S. Chevanin
%T Numerical simulation of hydrodynamics instabilities evolution on multiprocessor systems
%J Matematičeskoe modelirovanie
%D 2012
%P 17-32
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_2_a1/
%G ru
%F MM_2012_24_2_a1
V. S. Chevanin. Numerical simulation of hydrodynamics instabilities evolution on multiprocessor systems. Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 17-32. http://geodesic.mathdoc.fr/item/MM_2012_24_2_a1/

[1] S.K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[2] K.V. Vyaznikov, V.F. Tishkin, A.P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[3] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, V.S. Chevanin, “Ob odnom variante suschestvenno neostsilliruyuschikh raznostnykh skhem vysokogo poryadka tochnosti dlya sistem zakonov sokhraneniya”, Matematicheskoe modelirovanie, 21:11 (2009), 19–32

[4] V.V. Voevodin, Vl.V. Voevodin, Parallelnye vychisleniya, BKhV-Peterburg, S.-Pb., 2002

[5] Marc Snir, Steve W. Otto , David W. Walker , Jack Dongarra, Steven Huss-Lederman, MPI: The Complete Reference, MIT Press, Cambridge, MA, 1995 | Zbl

[6] A.S. Antonov, Parallelnoe programmirovanie s ispolzovaniem tekhnologii OpenMP, Izd-vo Moskovskogo Universiteta, 2009

[7] G.V. Wilson, Practical Parallel Programming, MIT Press, 1990

[8] F. Poggi, M.-H. Thorembey, G. Rodriguez, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability”, Physics of Fluids, 10:11 (1998), 2698–2700 | DOI

[9] M.E. Ladonkina, Chislennoe modelirovanie turbulentnogo peremeshivaniya s ispolzovaniem vysokoproizvoditelnykh sistem, Diss. na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, M, 2005