Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations
Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method, algorithm and software package for automatic solution of ordinary non-linear integro-differential-algebraic equations (IDAE) of sufficiently general form is briefly described. Under the automatic solution the author understands getting result without executing the stages of selecting method, of programming and program checking. There are solved both initial and boundary tasks for such equations. It is assumed that the complete set of boundary and initial conditions at the beginning of interval of integration was set. In consequence of differentiation the system of IDAE can be modified into system of ordinary in common essentially non-linear differential equations (IDE). The problem of finding solving of the system mentioned above on the constant mesh of the interval of integration is posed in two forms — as solving of the system of IDAE and as solving of the appropriate system of IDE, where the developed program should be used. With the purpose of reducing of the system of IDAE and system of IDE to the systems of ordinary non-linear algebraic equations at every stage of solving in the algorithm integration formulas and differentiation formulas invented by the author are correspondingly used. Systems like those test systems of both non-linear IDAE and IDE, which were cited in this investigation, are solved by using of programmes. It is evident that coincidence of results of solving of one and the same system of equations in its different forms can serve as a good evidence of correctness of the results which are got.
Keywords: integral-differential-algebraic equations, numerical methods, nonlinear tasks, computer programs.
@article{MM_2012_24_2_a0,
     author = {N. G. Bandurin and N. A. Gureeva},
     title = {Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_2_a0/}
}
TY  - JOUR
AU  - N. G. Bandurin
AU  - N. A. Gureeva
TI  - Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 16
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_2_a0/
LA  - ru
ID  - MM_2012_24_2_a0
ER  - 
%0 Journal Article
%A N. G. Bandurin
%A N. A. Gureeva
%T Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations
%J Matematičeskoe modelirovanie
%D 2012
%P 3-16
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_2_a0/
%G ru
%F MM_2012_24_2_a0
N. G. Bandurin; N. A. Gureeva. Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2012_24_2_a0/

[1] Runge C., “Ueber die numerisce Auflosing von Differentialgleichungen”, Math. Ann., 46 (1895), 167–178 | DOI | MR

[2] Kutta W., “Betrag zur naherungsweisen Integration totaler Differentialgleichungen”, Z. Math. Phys., 46 (1901), 435–453

[3] Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, eds. Dzh. Kholl, Dzh. Uatt, Mir, M., 1979, 312 pp.

[4] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 294 pp.

[5] Samoilenko A.M., Ronto N.I., Chislenno-analiticheskie metody issledovaniya kraevykh zadach, Naukova dumka, Kiev, 1986, 224 pp.

[6] Robertson H.H., The solution of a set of reaction rate equations, Numerical analysis: an introduction, Academic Press, 1966

[7] Alishenas T., Olafsson O., “Modeling and velocity stabilization of constrained systems”, BIT, 34, 455–483 | DOI | MR | Zbl

[8] Butcher J.C., “Implicit Runge-Kutta processes”, Math. Comput., 18 (1964), 50–64 | DOI | MR | Zbl

[9] Gear C.W., “The automatic integration of stiff ordinary differential equations”, Information Processing 68, Proceedings of the IFIR Congress 1968, North Holland Publ. Co., 1969, 187–193 | MR

[10] Verlan A.F., Sizikov V.S., Integralnye uravneniya: metody, algoritmy, programmy, Spravochnoe posobie, Naukova dumka, Kiev, 1986, 542 pp.

[11] Vasileva A.B., Tikhonov N.A., Integralnye uravneniya, Fizmatlit, M., 1984, 159 pp.

[12] Davidenko D.F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl

[13] Tikhonov A.N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sbornik, 31 (1952), 575–586 | MR | Zbl

[14] Korpusov M.O., Sveshnikov A.G., “O «razrushenii» reshenii polulineinykh uravnenii psevdoparametricheskogo tipa s bystro rastuschimi nelineinostyami”, ZhVMiMF, 45:1 (2005), 145–155 | MR | Zbl

[15] Bakhvalov N.S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, ZhVMiMF, 9:4 (1969), 841–859

[16] Shirobokov N.V., “Diagonalno-neyavnye skhemy chetvertogo poryadka dlya resheniya evolyutsionnykh uravnenii”, ZhVMiMF, 49:6 (2009), 1080–1084 | Zbl

[17] Kuznetsov E.B., Shalashilin V.I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po parametru”, ZhVMiMF, 33:12 (1993), 1792–1805 | MR | Zbl

[18] Krasnikov S.D., Kuznetsov E.B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, ZhVMiMF, 45:12 (2005), 2148–2158 | MR | Zbl

[19] Kuznetsov E.B., Shalashilin V.I., “Reshenie singulyarnykh uravnenii, preobrazovannykh k nailuchshemu argumentu”, Izvestiya vuzov. Matematika, 1998, no. 11, 56–63

[20] Kuznetsov E.B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, ZhVMiMF, 44:9 (2004), 1540–1551 | MR | Zbl

[21] Kalitkin N.N., Chislennye metody, Nauka, M., 1978, 512 pp.

[22] Skvortsov L.M., “Diagonalno neyavnye Fsal-metody Runge-Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matematicheskoe modelirovanie, 14:2 (2002), 3–17 | MR

[23] Antyushin V.F., Budanov A.V. i dr., “Integro-differentsialnoe uravnenie diffuzii”, Vestnik VGU, Ser. fiz. matem., 2004, no. 1, 51–55

[24] Validi A.R., Balolian E., “Numerical solution of Fredgolm integro-differential equation by Admian's decomposition method”, Int. Journal of Math Analysis, 3:36 (2009), 1769–1773 | MR

[25] Celir E., Bayram M., Yelogly T., “Solution of differential-algebraic equations (DAES) by adomian decomposition method”, Int. J. Pure and Appl. Math. Sciences, 3:1 (2006), 93–100

[26] Batiha B., Noorani M., Hashim I., “Numerical solutions of the integro-differential equations”, Int. J. Open Problems Comput. Math., 1:1 (2008) | MR

[27] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[28] Zverev V.G., Goldin V.D., “Ob odnoi spetsialnoi raznostnoi skheme dlya resheniya zhestkogo obyknovennogo differentsialnogo uravneniya”, Vychisl. tekhnologii, 13:3 (2008), 54–63

[29] Bagaev B.M., Shaidurov V.V., Setochnye metody resheniya zadach s pogranichnym sloem, Nauka, Novosibirsk, 1998

[30] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983, 198 pp.

[31] Dmitriev S.S., Kuznetsov E.B., “Chislennoe reshenie sistem integro-differentsialno-algebraicheskikh uravnenii s zapazdyvayuschim argumentom”, ZhVMiMF, 48:3 (2008), 430–444 | MR | Zbl

[32] Bandurin N.G., “Novyi chislennyi metod poryadka n dlya resheniya integro-differentsialnykh uravnenii obschego vida”, Vychisl. tekhnologii, 7:2 (2002), 3–10 | MR

[33] Bandurin N.G., Ignatev V.A., “Paket programm dlya resheniya sistem nelineinykh integro-differentsialnykh uravnenii (odno-, dvukh- i trekhmernye nachalno-kraevye zadachi)”, Matematicheskoe modelirovanie, 19:2 (2007), 105–111

[34] Bandurin N.G., “Chislennoe reshenie suschestvenno nelineinykh integro-differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vychisl. tekhnologii, 2010, no. 3, 31–38 | MR

[35] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968, 720 pp.

[36] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[37] Bandurin N.G., Ignatev V.A., “Kompleks programm dlya resheniya sistem nelineinykh integro-differentsialnykh uravnenii (IDU), soderzhaschikh proizvodnye i integraly drobnogo poryadka”, Materialy IX Mezhdunarodnoi konferentsii «Intellektualnye sistemy i kompyuternye nauki», 23–27 oktyabrya 2006 g., v. 2, chast 1, MGU, 56–58 | MR