Numerical analysis of new model of metals cristallization processes, two-dimensional case
Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 109-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the numerical simulation of new model of metals crystallization processes. The difficulties of such simulation arise from the multiscale phenomenology of crystallization process. Nowadays the experimental researches establish the multiplicity of the details of crystallization process, however the general theoretical view of this process does not yet exist. The model which is used in the present paper is based on the description of a space occupied by the crystallizing alloy as the porous medium. The propagation of perturbations in such a medium is described by the equations of Biot’s type. The emergence of germs is described by modified Kahn-Hilliard equation. Previously the 1D numerical scheme has been constructed and its convergence property has been demonstrated. It is shown the possibility to model different crystallization regimes when changing the parameters of the model. In the presented paper 2D numerical model and results of computations are given. Due to multiscale phenomena the calculations require significant CPU time and hence the 2D model is based on explicit and explicit iteration algorithms which are implemented efficiently on multiprocessor computers.
Keywords: numerical simulation, metals crystallization, grid discretization, time integration.
Mots-clés : explicit iterations
@article{MM_2012_24_1_a7,
     author = {V. T. Zhukov and N. A. Zaitsev and V. G. Lysov and Yu. G. Rykov and O. B. Feodoritova},
     title = {Numerical analysis of new model of metals cristallization processes, two-dimensional case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_1_a7/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. A. Zaitsev
AU  - V. G. Lysov
AU  - Yu. G. Rykov
AU  - O. B. Feodoritova
TI  - Numerical analysis of new model of metals cristallization processes, two-dimensional case
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 109
EP  - 128
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_1_a7/
LA  - ru
ID  - MM_2012_24_1_a7
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. A. Zaitsev
%A V. G. Lysov
%A Yu. G. Rykov
%A O. B. Feodoritova
%T Numerical analysis of new model of metals cristallization processes, two-dimensional case
%J Matematičeskoe modelirovanie
%D 2012
%P 109-128
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_1_a7/
%G ru
%F MM_2012_24_1_a7
V. T. Zhukov; N. A. Zaitsev; V. G. Lysov; Yu. G. Rykov; O. B. Feodoritova. Numerical analysis of new model of metals cristallization processes, two-dimensional case. Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/MM_2012_24_1_a7/

[1] Yu.G. Rykov, N.A. Zaitsev, “Chislennyi analiz novoi modeli protsessov kristallizatsii metallov, odnomernyi sluchai”, Matematicheskoe modelirovanie, 22:12 (2010), 82–102 | Zbl

[2] E.V. Radkevich, Matematicheskie voprosy neravnovesnykh protsessov, 4, Izd. Tamara Rozhkovskaya, Novosibirsk, 2007, 285 pp.

[3] N.N. Yakovlev, E.A. Lukashev, E.V. Radkevich, “Problemy rekonstruktsii protsessa napravlennoi kristallizatsii”, DAN, 421:5 (2008), 625–629 | MR

[4] M.A. Biot, “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[5] J.W. Cahn, J.E. Hilliard, “Free energy of a non-uniform system III: Nucleation in a two-component incompressible fluid”, J. Chemical Physics, 31 (1959), 688–699 | DOI

[6] D.W. Hoffman, J.W. Cahn, “A vector thermodynamics for anisotropic surfaces I: Fundamentals and applications to plane surface junctions”, Surface Sciences, 31 (1972), 368–388 | DOI

[7] V.P. Skripov, A.V. Skripov, “Spinodalnyi raspad (Fazovyi perekhod s uchastiem neustoichivykh sostoyanii)”, UFN, 128:2 (1979), 193–231

[8] E.V. Radkevich, “On structures in instability zones”, J. Math. Sci., 165:1 (2010), 127–157 | DOI | MR

[9] V.T. Zhukov, “O yavnykh metodakh chislennogo integrirovaniya dlya parabolicheskikh uravnenii”, Matematicheskoe modelirovanie, 22:10 (2010), 127–158 | MR | Zbl

[10] V.I. Lebedev, S.A. Finogenov, “O poryadke vybora iteratsionnykh parametrov v chebyshevskom tsiklicheskom metode”, ZhVM i MF, 11:2 (1971) | MR

[11] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[12] U. Vaingard, Vvedenie v fiziku kristallizatsii metallov, Mir, M., 1967, 159 pp.

[13] N.A. Zaitsev, Yu.G. Rykov, Chislennyi raschet odnoi modeli, opisyvayuschei kristallizatsiyu metallov I. Odnomernyi sluchai, Preprint IPM im.M.V. Keldysha RAN, # 72, 2007, 16 pp.

[14] N. Kablov, Litye lopatki gazoturbinnykh dvigatelei. Splavy. Tekhnologii. Pokrytie, MISIS, M., 2001, 632 pp.

[15] O. Kubashevskii, S.B. Olkokk, Metallurgicheskaya termokhimiya, Metallurgiya, M., 1982, 393 pp.