Truncated multidimensional Newton’s method
Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple generalization of the Newton’s method for systems of nonlinear equations was considered. It allows reducing a number of iterations until convergence if initial approximation is selected far from the exact solution. The suggested approach was tested for the problem which appears on solving of non-linear heat-conduction equation with several implicit schemes.
Keywords: Newton's method, systems of nonlinear equations, implicit methods for systems of ODE.
@article{MM_2012_24_1_a6,
     author = {I. P. Poshivaylo},
     title = {Truncated multidimensional {Newton{\textquoteright}s} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_1_a6/}
}
TY  - JOUR
AU  - I. P. Poshivaylo
TI  - Truncated multidimensional Newton’s method
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 103
EP  - 108
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_1_a6/
LA  - ru
ID  - MM_2012_24_1_a6
ER  - 
%0 Journal Article
%A I. P. Poshivaylo
%T Truncated multidimensional Newton’s method
%J Matematičeskoe modelirovanie
%D 2012
%P 103-108
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_1_a6/
%G ru
%F MM_2012_24_1_a6
I. P. Poshivaylo. Truncated multidimensional Newton’s method. Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 103-108. http://geodesic.mathdoc.fr/item/MM_2012_24_1_a6/

[1] E. Khairer, G. Vanner., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[2] M.K. Gavurin, “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. Vuzov. Matematika, 1958, no. 6, 18–31 | MR | Zbl

[3] E.P. Zhidkov, I.V. Puzynin, “Ob odnom metode vvedeniya parametra pri reshenii kraevykh zadach dlya nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, ZhVM i MF, 7:5 (1967), 1086–1095

[4] V.V. Ermakov, N.N. Kalitkin, “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, ZhVM i MF, 21:2 (1981), 491–497 | MR | Zbl

[5] N.N. Kalitkin, I.P. Poshivailo, “O vychislenii prostykh i kratnykh kornei nelineinogo uravneniya”, Matematicheskoe modelirovanie, 20:7 (2008), 57–64