The modeling of some optical systems on the base of parabolic differential-difference equation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 38-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of an optical system with field's transformation in two-dimensional feedback is considered. Such a system is described by the second boundary value problem for quasilinear parabolic equation with transformations of the space variables. The case of irreversible transformations of space variables (shifts) in the terms with second derivatives is considered.
Keywords: functional-differential equations, smoothness of solution.
@article{MM_2012_24_12_a6,
     author = {A. M. Selitskii},
     title = {The modeling of some optical systems on the base of parabolic differential-difference equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {38--42},
     publisher = {mathdoc},
     volume = {24},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a6/}
}
TY  - JOUR
AU  - A. M. Selitskii
TI  - The modeling of some optical systems on the base of parabolic differential-difference equation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 38
EP  - 42
VL  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a6/
LA  - ru
ID  - MM_2012_24_12_a6
ER  - 
%0 Journal Article
%A A. M. Selitskii
%T The modeling of some optical systems on the base of parabolic differential-difference equation
%J Matematičeskoe modelirovanie
%D 2012
%P 38-42
%V 24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a6/
%G ru
%F MM_2012_24_12_a6
A. M. Selitskii. The modeling of some optical systems on the base of parabolic differential-difference equation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 38-42. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a6/