Parallel solving of optimization problems on distributed systems by asynchronous differential evolution
Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 33-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asynchronous Differential Evolution (ADE) is an Evolutionary algorithm to solve derivative-free global optimization problems. It provides an effective parallel realization. ADE with Restart (ADE-R) automatically restarts calculations with an increased population size while stagnation or population degeneration is diagnosed. Thus the probability of convergence can approach a unity. Performance and speed-up for parallel calculations of various ADE-R strategies is compared with the classical Differential Evolution strategies with Restart (DE-R).
Keywords: asynchronous differential evolution, global minimum, parallel computation.
@article{MM_2012_24_12_a5,
     author = {E. I. Zhabitskaya and M. V. Zhabitsky},
     title = {Parallel solving of optimization problems on distributed systems by asynchronous differential evolution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--37},
     publisher = {mathdoc},
     volume = {24},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a5/}
}
TY  - JOUR
AU  - E. I. Zhabitskaya
AU  - M. V. Zhabitsky
TI  - Parallel solving of optimization problems on distributed systems by asynchronous differential evolution
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 33
EP  - 37
VL  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a5/
LA  - ru
ID  - MM_2012_24_12_a5
ER  - 
%0 Journal Article
%A E. I. Zhabitskaya
%A M. V. Zhabitsky
%T Parallel solving of optimization problems on distributed systems by asynchronous differential evolution
%J Matematičeskoe modelirovanie
%D 2012
%P 33-37
%V 24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a5/
%G ru
%F MM_2012_24_12_a5
E. I. Zhabitskaya; M. V. Zhabitsky. Parallel solving of optimization problems on distributed systems by asynchronous differential evolution. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 33-37. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a5/

[1] Price K. V., Storn R. M., “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”, J. of Global Optimization, 11 (1997), 341 | DOI | MR | Zbl

[2] Price K. V., Storn R. M., Lampinen J. A., Differential evolution: a practical approach to global optimization, Springer-Verlag, Berlin–Heidelberg, 2005 | MR

[3] Zhabitskaya E. I., Zhabitsky M. V., “Asynchronous Differential Evolution”, Lecture Notes in Computer Science, 7125, 2012, 328 | DOI

[4] Zhabitskaya E. I., “Constraints on control parameters of Asynchronous Differential Evolution”, Lecture Notes in Computer Science, 7125, 2012, 322 | DOI

[5] Zhabitskaya E. I., Zhabitsky M. V., “Asynchronous Differential Evolution with restart”, Lecture Notes in Computer Science (to appear)

[6] Suganthan P. N. et al., Problem definitions and evaluation criteria for the CEC05 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005

[7] Lampinen J., “Differential Evolution — new naturally parallel approach for engineering design optimization”, Developments in computational mechanics with high performance computing, Civil-Comp. Press, Edinburgh, 217