Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_12_a4, author = {S. V. Polyakov}, title = {Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--32}, publisher = {mathdoc}, volume = {24}, number = {12}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a4/} }
TY - JOUR AU - S. V. Polyakov TI - Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations JO - Matematičeskoe modelirovanie PY - 2012 SP - 29 EP - 32 VL - 24 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a4/ LA - ru ID - MM_2012_24_12_a4 ER -
%0 Journal Article %A S. V. Polyakov %T Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations %J Matematičeskoe modelirovanie %D 2012 %P 29-32 %V 24 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a4/ %G ru %F MM_2012_24_12_a4
S. V. Polyakov. Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 29-32. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a4/
[1] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie, Nauka. Fizmatlit, M., 1997, 320 pp.
[2] Samarskii A. A., “O monotonnykh raznostnykh skhemakh dlya ellipticheskikh i parabolicheskikh uravnenii v sluchae nesamosopryazhennogo ellipticheskogo operatora”, ZhVMiMF, 5:3 (1965), 548–551 | MR
[3] Golant E. I., “O sopryazhennykh semeistvakh raznostnykh skhem dlya uravnenii parabolicheskogo tipa s mladshimi chlenami”, ZhVMiMF, 18:5 (1978), 1162–1169 | MR | Zbl
[4] Karetkina N. V., “Bezuslovno ustoichivaya raznostnaya skhema dlya parabolicheskikh uravnenii, soderzhaschikh pervye proizvodnye”, ZhVMiMF, 20:1 (1980), 236–240 | MR | Zbl
[5] Fryazinov I. V., “Metod balansa i variatsionno-raznostnye skhemy”, Dif. uravn., 16:7 (1980), 1332–1343 | MR | Zbl
[6] Polyakov S. V., Sablikov V. A., “Lateralnyi perenos fotoindutsirovannykh nositelei zaryada v geterostrukturakh s dvumernym elektronnym gazom”, Matem. model., 9:12 (1997), 76–86 | Zbl
[7] Kudryashova T. A., Polyakov S. V., “O nekotorykh metodakh resheniya kraevykh zadach na mnogoprotsessornykh vychislitelnykh sistemakh”, Trudy chetvertoi mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu (27 iyunya–1 iyulya 2000, g. Moskva), v. 2, ed. L. A. Uvarova, Izd-vo “STANKIN”, M., 2001, 134–145
[8] Polyakov S. V., “Eksponentsialnye skhemy dlya resheniya evolyutsionnykh uravnenii na neregulyarnykh setkakh”, Uchenye zapiski kazanskogo gosudarstvennogo universiteta. Seriya “Fiziko-matematicheskie nauki”, 149, no. 4, 2007, 121–131
[9] Karamzin Yu. N., Polyakov S. V., “Eksponentsialnye konechno-ob'ëmnye skhemy dlya resheniya ellipticheskikh i parabolicheskikh uravnenii obschego vida na neregulyarnykh setkakh”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Vosmoi Vserossiiskoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya A. D. Lyashko, Kazanskii universitet, Kazan, 2010, 234–248
[10] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp. | MR | Zbl