Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_12_a21, author = {A. M. Zubanov and P. D. Shirkov}, title = {Numerical study of one-step lineary implicit methods which are {L-equivalent} to stiffly accurate two-stages {Runge--Kutta} schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--136}, publisher = {mathdoc}, volume = {24}, number = {12}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a21/} }
TY - JOUR AU - A. M. Zubanov AU - P. D. Shirkov TI - Numerical study of one-step lineary implicit methods which are L-equivalent to stiffly accurate two-stages Runge--Kutta schemes JO - Matematičeskoe modelirovanie PY - 2012 SP - 129 EP - 136 VL - 24 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a21/ LA - ru ID - MM_2012_24_12_a21 ER -
%0 Journal Article %A A. M. Zubanov %A P. D. Shirkov %T Numerical study of one-step lineary implicit methods which are L-equivalent to stiffly accurate two-stages Runge--Kutta schemes %J Matematičeskoe modelirovanie %D 2012 %P 129-136 %V 24 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a21/ %G ru %F MM_2012_24_12_a21
A. M. Zubanov; P. D. Shirkov. Numerical study of one-step lineary implicit methods which are L-equivalent to stiffly accurate two-stages Runge--Kutta schemes. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 129-136. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a21/