The soil wash-out and filtration consolidation problem taking into account the salt and heat transfer
Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical models of the soil filtration consolidation problem with taking into account soil wash-out and salt transfer in on isothermal conditions have been formulated. The suspension flow in the zone of erosion has been taken into account too. A kinematics boundary condition for the border of wash-out region has been deduced. The numerical solutions of the corresponding boundary-value problems have been found by the radial basis functions method. Influence of heat transfer, salt transfer and intensity of soil erosion on fluid pressures has been confirmed by numerical experiments.
Keywords: soil wash-out; filtration consolidation; heat and mass transfer; radial basis function method.
@article{MM_2012_24_11_a7,
     author = {A. P. Vlasyuk and P. N. Martinyuk},
     title = {The soil wash-out and filtration consolidation problem taking into account the salt and heat transfer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {24},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_11_a7/}
}
TY  - JOUR
AU  - A. P. Vlasyuk
AU  - P. N. Martinyuk
TI  - The soil wash-out and filtration consolidation problem taking into account the salt and heat transfer
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 97
EP  - 112
VL  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_11_a7/
LA  - ru
ID  - MM_2012_24_11_a7
ER  - 
%0 Journal Article
%A A. P. Vlasyuk
%A P. N. Martinyuk
%T The soil wash-out and filtration consolidation problem taking into account the salt and heat transfer
%J Matematičeskoe modelirovanie
%D 2012
%P 97-112
%V 24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_11_a7/
%G ru
%F MM_2012_24_11_a7
A. P. Vlasyuk; P. N. Martinyuk. The soil wash-out and filtration consolidation problem taking into account the salt and heat transfer. Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 97-112. http://geodesic.mathdoc.fr/item/MM_2012_24_11_a7/

[1] “Mezhdunarodnyi seminar po filtratsionnoi prochnosti plotin i osnovanii”, Gidrotekhnika, 2009, no. 2, 6–7

[2] V. S. Istomina, Filtratsionnaya ustoichivost gruntov, Gosstroiizdat, M., 1957, 294 pp.

[3] R. R. Chugaev, Gidrotekhnicheskie sooruzheniya, v. 2, Vodoslivnye plotiny, Agropromizdat, M., 1985, 302 pp.

[4] K. N. Anakhaev, K. A. Gegiev, B. Kh. Amshokov, “Ob avariyakh i povrezhdeniyakh zemlyanykh plotin s vodovodami: prichiny i sposoby sovershenstvovaniya protivofiltratsionnoi zaschity”, Gidrotekhnicheskoe stroitelstvo, 2004, no. 3, 30–36

[5] G. Kh. Pravednyi, V. G. Radchenko, “Prakticheskie rekomendatsii po obespecheniyu filtratsionnoi prochnosti grunta yadra (ekrana) v zone kontakta s osnovaniem”, Energeticheskoe stroitelstvo, 1973, no. 7, 40–42

[6] V. N. Zhilenkov, “O kontaktnom razmyve glinistykh gruntov filtratsionnym potokom”, Trudy koordinatsionnykh soveschanii po gidrotekhnike, 1972, no. 72, 48–61

[7] M. I. Gogoberidze, R. G. Kakauridze, Yu. N. Mikashvili, D. Ts. Mirtskhulava, “Obobschenie dannykh statisticheskogo analiza avarii i intsidentov v aspekte nadezhnosti plotin”, Soobscheniya Akad. nauk Gruz. SSR, 86:3 (1977), 681–684

[8] M. Foster, R. Fell, “Use of event trees to estimate the probability of failure of embankment dams by internal erosion and piping”, 20th Congress on Large Dams (Beijing, 2000), 237–259

[9] V. N. Zhilenkov, Vodoupornye svoistva gruntov yader i ekranov vysokikh plotin, Energiya, L., 1968, 114 pp.

[10] G. Kh. Pravednyi, Proektirovanie i podbor granulometricheskogo sostava filtrov perekhodnykh zon vysokikh plotin, Energiya, M.–L., 1966, 83 pp.

[11] D. M. Tartakovskii, I. M. Vasilev, “O neravnomernykh deformatsiyakh zemlyanykh plotin v oblastyakh primykaniya gruntov k zhestkim nerovnym poverkhnostyam”, Trudy Leningradskogo politekhnicheskogo in-ta, 292, 1968, 81–88

[12] M. P. Malyshev, “Podbor sostava i razmerov perekhodnykh zon vysokikh kamenno-zemlyanykh plotin iz usloviya nerazmyvaemosti treschin v ikh yadrakh i ekranakh”, Trudy koordinatsionnykh soveschanii po gidrotekhnike, 1972, no. 72, 86–94

[13] N. N. Verigin, “Kolmatazh prizaboinoi zony skvazhiny”, Zhurnal prikladnoi matematiki i tekhnicheskoi fiziki, 1964, no. 2, 74–80 | Zbl

[14] V. L. Polyakov, “O filtratsionnykh deformatsiyakh grunta s obrazovaniem akkumuliruyuschikh zon”, Prikladnaya gidromekhanika, 5:2 (2003), 45–56 | MR | Zbl

[15] N. N. Khlapuk, “Matematicheskoe modelirovanie protsessa filtratsii v sredakh, gde proiskhodit mekhanicheskaya sufoziya”, Gidromelioratsiya i gidrotekhnicheskoe stroitelstvo, 1998, no. 23, 92–98 (na ukr. yazyke)

[16] A. F. Dmitriev, N. N. Khlapuk, D. A. Dmitriev, Deformatsionnye protsessy v nesvyaznykh gruntakh i pridrennoi zone i ikh vliyanie na rabotu osushitelno-uvlazhnitelnykh sistem, Izd-vo RGTU, Rovno, 2002, 145 pp.

[17] J. B. Sellmeijer, On the mechanism of piping under impervious structures (Thesis), LGM-Mededelingen, 96, 1988, 112 pp.

[18] A. P. Vlasyuk, P. N. Martynyuk, Chislennoe reshenie zadach konsolidatsii i filtratsionnogo razrusheniya gruntov v usloviyakh teplo-masoperenosa metodom radialnykh bazisnykh funktsii, Izd-vo NUVKhP, Rovno, 2010, 277 pp. (na ukr. yazyke)

[19] I. V. Sergienko, V. V. Skopetskii, V. S. Deineka, Matematicheskoe modelirovanie i issledovanie protsessov v neodnorodnykh sredakh, Nauk. dumka, Kiev, 1991, 432 pp.

[20] F. Golay, D. Lachouette, S. Bonelli, P. Seppecher, “Interfacial erosion: a three-dimensional model”, C.R. Mecanique, 338:6 (2010), 333–337 | DOI | Zbl

[21] A. P. Vlasyuk, P. N. Martynyuk, Matematicheskoe modelirovanie konsolidatsii gruntov v sluchae filtratsii solevykh rastvorov v neizotermicheskikh usloviyakh, Izd-vo NUVKhP, Rovno, 2008, 416 pp. (na ukr. yazyke)

[22] A. P. Vlasyuk, P. N. Martynyuk, “Filtratsionnaya konsolidatsiya trëkhfaznykh gruntov s uchëtom polzuchesti skeleta i vliyaniya soleperenosa v neizotermicheskom rezhime”, Matematicheskoe modelirovanie, 22:4 (2010), 32–56 | MR | Zbl

[23] P. Dzh. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp.

[24] L. C. Van Rijn, K. Meijer, “Three-dimensional modeling of sand and mud transport in current and waves”, The transport of suspended sediments and its mathematical modeling, Int. Symp. (Florence, Italy, 1991), 683–708

[25] A. P. Vlasyuk, P. N. Martynyuk, “Matematicheskoe modelirovanie vzaimnykh protsessov filtratsionnoi konsolidatsii tela damby i razmyva grunta v eë osnovanii v usloviyakh teplosoleperenosa”, Vestnik Kievskogo un-ta. Ser. fiz.-matem. nauki, 2010, no. 2, 72–77 (na ukr. yazyke)

[26] G. I. Shishkin, “Setochnaya approksimatsiya parabolicheskogo uravneniya konvektsii-difuzii na apriorno adaptiruyuschikhsya setkakh: $\varepsilon$-ravnomerno skhodyaschiesya skhemy”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:6 (2008), 1014–1033 | MR | Zbl

[27] A. A. Sukhinov, “Postroenie dekartovykh setok s dinamicheskoi adaptatsiei k resheniyu”, Matematicheskoe modelirovanie, 22:1 (2010), 86–98 | MR | Zbl

[28] I. A. Vaseeva, A. V. Kofanov, V. D. Liseikin, Yu. V. Likhanova, A. M. Kharitonchik, “Tekhnologiya postroeniya prostranstvennykh adaptivnykh setok”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:1 (2010), 99–117 | MR

[29] E. J. Kansa, “Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics. II: Solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comput. Math. Appl., 19 (1990), 147–161 | DOI | MR | Zbl

[30] X. Zhang, X.-H. Liu, K.-Z. Song, M.-W. Lu, “Least-squares collocation meshless method”, Int. J. Numer. Methods Engin., 51 (2001), 1089–1100 | DOI | MR | Zbl

[31] X. Liu, “Radial point collocation method for solving convection-diffusion problems”, J. Zhejiang Univ. Science A, 7:6 (2006), 1862–1775

[32] A. P. Vlasyuk, P. N. Martynyuk, “Numerical solution of three-dimensional problems of filtration consolidation with regard for the influence of technogenic factors by the method of radial basis functions”, Journal of Mathematical Sciences, 171:5 (2010), 632–648 | DOI | MR

[33] A. P. Vlasyuk, P. N. Martynyuk, “Vzaimnye protsessy filtratsionnoi konsolidatsii i kontaktnogo razmyva grunta v usloviyakh vliyaniya tekhnogennykh faktorov i ikh matematicheskoe modelirovanie soglasno odnofaznoi zadachi Stefana”, Vestnik NUVKhP. Ser. Tekhnicheskie nauki, 2010, no. 4, 210–217 (na ukr. yazyke) | MR

[34] P. N. Martynyuk, “Metod radialnykh bazisnikh funktsii v kraevykh zadachakh dlya parabolicheskikh uravnenii s usloviyami sopryazheniya”, Vestnik Kievskogo un-ta. Ser. fiz.-matem. nauki, 2007, no. 4, 178–181 (na ukr. yazyke) | Zbl

[35] H. Wendland, Scattered data approximation, University Press, Cambridge, 2005, 336 pp. | MR | Zbl

[36] E. J. Kansa, “The role of multiquadric shape parameters in the numerical solution of PDEs”, ECCOMAS Thematic Conferense on Meshless Methods (Lisbon, 2005), A41.1