Solutions of the momentum chains for the transport equation and their approximations
Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

One linear infinite mathematical model of a hierarchic system is studied, in which oscillation is transferred consistently from the top levels to the bottom ones, and a phenomenon of filling the levels in finite time typical for explosive processes, appears. Test calculations are carried out and presented, simulation models are justified.
Mots-clés : simulation
Keywords: infinite systems of linear differential equations.
@article{MM_2012_24_11_a4,
     author = {V. A. Galkin and P. A. Zdorovtsev},
     title = {Solutions of the momentum chains for the transport equation and their approximations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {24},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_11_a4/}
}
TY  - JOUR
AU  - V. A. Galkin
AU  - P. A. Zdorovtsev
TI  - Solutions of the momentum chains for the transport equation and their approximations
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 65
EP  - 71
VL  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_11_a4/
LA  - ru
ID  - MM_2012_24_11_a4
ER  - 
%0 Journal Article
%A V. A. Galkin
%A P. A. Zdorovtsev
%T Solutions of the momentum chains for the transport equation and their approximations
%J Matematičeskoe modelirovanie
%D 2012
%P 65-71
%V 24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_11_a4/
%G ru
%F MM_2012_24_11_a4
V. A. Galkin; P. A. Zdorovtsev. Solutions of the momentum chains for the transport equation and their approximations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 65-71. http://geodesic.mathdoc.fr/item/MM_2012_24_11_a4/

[1] Galkin V. A., Uravnenie Smolukhovskogo, Fizmatlit, M., 2001 | MR

[2] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1973

[3] Galkin V. S., Zharov V. A., “Tochnye resheniya kineticheskogo uravneniya Boltsmana–Maksvella”, Prikladnaya matematika i mekhanika, 68:1 (2004) | MR | Zbl

[4] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[6] Galkin V. A., Analiz matematicheskikh modelei: sistemy zakonov sokhraneniya, uravneniya Boltsmana i Smolukhovskogo, Binom, M., 2009