The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment from the angular velocity
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 109-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear mathematical model of the planar and spatial interaction of a medium to the rigid body was constructed. That model takes into account the dependency of shoulder of force from effective angular velocity of the body (the type of Struhali number). In this case the moment of force of the interaction itself is also function of the angle of attack. As it has shown for processing the experiment on the motion of the uniform circular cylinders in water, these facts necessary to take into account at modeling. At study of flat and spatial model of the interaction of the rigid body with a medium the new cases of full integrability in elementary function are found that has allowed to find the qualitative analogies between the free moving bodies in a resisting medium and the oscillations of bolted bodies in a jet flow.
Keywords: rigid body, resisting medium, jet flow, full integrability, rotating derivative.
@article{MM_2012_24_10_a9,
     author = {M. V. Shamolin},
     title = {The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment from the angular velocity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--132},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a9/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment from the angular velocity
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 109
EP  - 132
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a9/
LA  - ru
ID  - MM_2012_24_10_a9
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment from the angular velocity
%J Matematičeskoe modelirovanie
%D 2012
%P 109-132
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a9/
%G ru
%F MM_2012_24_10_a9
M. V. Shamolin. The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment from the angular velocity. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 109-132. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a9/

[1] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp. | Zbl

[2] Eroshin V. A., Privalov V. A., Samsonov V. A., “Dve modelnye zadachi o dvizhenii tela v soprotivlyayuscheisya srede”, Sb. nauch.-metod. statei po teoretich. mekhan., 18, Nauka, M., 1987, 75–78

[3] Eroshin V. A., “Eksperimentalnoe issledovanie vkhoda uprugogo tsilindra v vodu s bolshoi skorostyu”, Izv. RAN, MZhG, 1992, no. 5, 20–30

[4] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tochki i tela v soprotivlyayuscheisya srede, Izd-vo MGU, M., 1986, 86 pp.

[5] Samsonov V. A., Shamolin M. V., Eroshin V. A., Makarshin V. M., Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii, Nauchnyi otchet Instituta mekhaniki MGU No 4396, M., 1995, 41 pp.

[6] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 ; 105 | MR | Zbl | Zbl

[7] Samsonov V. A., Shamolin M. V., K zadache o tormozhenii tela v srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU No 4141, M., 1991, 48 pp.

[8] Shamolin M. V., “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Matematicheskoe modelirovanie, 23:12 (2011), 79–104 | MR

[9] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fund. i prikl. mat., 14:3 (2008), 3–237 | MR

[10] Bivin Yu. K., Viktorov V. V., Stepanov L. P., “Issledovanie dvizheniya tverdogo tela v glinistoi srede”, Izv. AN SSSR, MTT, 1978, no. 2, 159–165

[11] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976, 495 pp. | MR

[12] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[13] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. MGU, Ser. 1, Matematika, mekhanika, 1993, no. 2, 66–70 ; 113 | MR | Zbl | Zbl

[14] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947

[15] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969, 349 pp.

[16] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988, 320 pp.