Сabaret scheme for the two-dimensional incompressible fluid in terms of ~-- vorticity>>
Matematičeskoe modelirovanie, Tome 23 (2011) no. 9, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In present article Cabaret-method was generalized in case of two-dimensional incompressible fluid in terms of «stream function – vorticity». The example test «one-eddy» problem shows the high quality of the received scheme from the standpoint of the question of dispersion and diffusion properties. In the problem of decaying homogeneous isotropic turbulence slope of the energy spectra for all grids (16$\times$16, 32$\times$32, 64$\times$64, 128$\times$128) are «$-3$» up to the highest harmonics, which coincides with the theory of Batchelor.
Keywords: cabaret-method, two-dimensional incompressinle fluid, homogeneous isotropic turbulence, energy spectrum, structural functions.
@article{MM_2011_23_9_a6,
     author = {V. Yu. Glotov and V. M. Goloviznin},
     title = {{\CYRS}abaret scheme for the two-dimensional incompressible fluid in terms of <<stream function~-- vorticity>>},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {23},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_9_a6/}
}
TY  - JOUR
AU  - V. Yu. Glotov
AU  - V. M. Goloviznin
TI  - Сabaret scheme for the two-dimensional incompressible fluid in terms of <>
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 89
EP  - 104
VL  - 23
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_9_a6/
LA  - ru
ID  - MM_2011_23_9_a6
ER  - 
%0 Journal Article
%A V. Yu. Glotov
%A V. M. Goloviznin
%T Сabaret scheme for the two-dimensional incompressible fluid in terms of <>
%J Matematičeskoe modelirovanie
%D 2011
%P 89-104
%V 23
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_9_a6/
%G ru
%F MM_2011_23_9_a6
V. Yu. Glotov; V. M. Goloviznin. Сabaret scheme for the two-dimensional incompressible fluid in terms of <>. Matematičeskoe modelirovanie, Tome 23 (2011) no. 9, pp. 89-104. http://geodesic.mathdoc.fr/item/MM_2011_23_9_a6/

[1] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[2] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy Kabare”, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[3] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980

[4] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl

[5] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy Kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123

[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh”, Matematicheskoe modelirovanie, 18:11 (2006), 14–30 | MR | Zbl

[7] Karabasov S. A., Berloff P. S., Goloviznin V. M., 155–168, Ocean Modelling, 30, 2009 | DOI

[8] Alekseenko S. V., Kuibin P. A., Okulov V. L., Vvedenie v teoriyu kontsentrirovannykh vikhrei, Institut teplofiziki SO RAN, Novosibirsk, 2003, 504 pp. | MR | Zbl

[9] Goloviznin V. M., Semenov V. N., Korotkin I. A., Karabasov S. A., “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 3 (2007), 439–456 | DOI | MR

[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[11] Arakawa A., “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow, II”, Journal of computational physics, 135 (1997), 103–114 | DOI | MR | Zbl

[12] Sommeria J., “Experimental study of the two-dimensional inverse energy cascade in a square box”, J. Fluid Mech., 170 (1986), 139–168 | DOI

[13] Tabeling P., Hansen A. E., Paret J., “Forced and decaying 2D turbulence: experimental study”, Lecture Notes in Physics, 511, 1998, 145–169 | DOI | MR | Zbl

[14] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 292 pp.

[15] Love M. D., “Subgrid modeling studies with Burgers' equation, I”, J. Fluid Mech., 100 (1980), 87–110 | DOI | MR | Zbl

[16] Tabeling P., “Two-dimensional turbulence: a physicist approach”, Physics Reports, 362 (2002), 1–62 | DOI | MR | Zbl

[17] Paret J., Tabeling P., “Experimental observation of the two-dimensional inverse energy cascade”, Phys. Rev. Lett., 79 (1997), 4162–4165 | DOI