Eddy currents in case of anisotropic and inhomogeneous conductive plates
Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper eddy currents distribution in anisotropic and inhomogeneous conductive plate has been modelled using a scalar integro-differential equation and Bubnov–Galerkin method. Numerical algorithm has been realized in original software package. Examples of its usage have been represented. Influence of anisotropic and homogeneouse conductive properties of plate’s material on eddy currents distribution has been analized.
Keywords: mathematical modelling, eddy currents, thin conductive plate, skin effect, integro-differential equation.
@article{MM_2011_23_8_a1,
     author = {T. V. Kochubey and V. I. Astakhov},
     title = {Eddy currents in case of anisotropic and inhomogeneous conductive plates},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_8_a1/}
}
TY  - JOUR
AU  - T. V. Kochubey
AU  - V. I. Astakhov
TI  - Eddy currents in case of anisotropic and inhomogeneous conductive plates
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 19
EP  - 32
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_8_a1/
LA  - ru
ID  - MM_2011_23_8_a1
ER  - 
%0 Journal Article
%A T. V. Kochubey
%A V. I. Astakhov
%T Eddy currents in case of anisotropic and inhomogeneous conductive plates
%J Matematičeskoe modelirovanie
%D 2011
%P 19-32
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_8_a1/
%G ru
%F MM_2011_23_8_a1
T. V. Kochubey; V. I. Astakhov. Eddy currents in case of anisotropic and inhomogeneous conductive plates. Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2011_23_8_a1/

[1] Tseitlin L. A., “Vikhrevye toki v tonkikh plastinakh i obolochkakh”, ZhTF, 1969, no. 10, 1733–1741

[2] Maergoiz I. D., Tozoni O. V., “Integralnye uravneniya dlya rascheta trekhmernogo kvazistatsionarnogo elektromagnitnogo polya”, Izv. vuzov. Elektromekhanika, 1972, no. 4, 343–349 | MR

[3] Astakhov V. I., Kolesnikov E. V., Pashkovskii V. I., “Vikhrevye toki v provodyaschikh plastinakh”, Izv. vuzov. Elektromekhanika, 1972, no. 8, 822–830

[4] Astakhov V. I., “Zadacha rascheta kvazistatsionarnogo elektromagnitnogo polya v provodyaschikh obolochkakh”, Izv. vuzov. Elektromekhanika, 1985, no. 1, 15–30

[5] Shimoni K., Teoreticheskaya elektrotekhnika, Mir, M., 1964, 773 pp.

[6] Kochin N. E., Vektornyi analiz i nachala tenzornogo ischisleniya, Izd. AN SSSR, M., 1961, 424 pp.

[7] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[9] Smirnov V. I., Kurs vysshei matematiki, v. 5, GIFML, M., 1959, 655 pp. | MR

[10] Besov O. V., Ilin V. L., Nikolskii S. N., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[11] Vilenkin N. Ya., Gorin S. V. i dr., Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1964, 424 pp. | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, FIZMATLIT, M., 2004, 572 pp. | Zbl

[13] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 431 pp. | MR

[14] Kochubei T. V., Astakhov V. I., Programma dlya rascheta vikhrevykh tokov v nemagnitnykh provodyaschikh obolochkakh s kraem (CompEC 3D), Zaregestrirovanno v Reestre programm dlya EVM. Svidetelstvo o registratsii No 2010613480 ot 28 maya 2010 goda

[15] Turovskii Ya., Elektromagnitnye raschety elementov elektricheskikh mashin, Energoatomizdat, M., 1986, 200 pp.

[16] Zhukov S. V., “O granichnykh usloviyakh dlya opredeleniya peremennykh magnitnykh polei tonkikh metallicheskikh obolochek”, ZhTF, 1969, no. 7, 1149–1154