Behavioral hypotheses and mathematical modeling in humanitarian sciences
Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The specific features of mathematical modeling in social sciences are discussed, attention is paid to hypotheses concerning the individual and collective behavior. Examples of such hypotheses are given.
Keywords: mathematical modeling, humanitarian sciences, behavioral hypotheses, imitative behavior.
@article{MM_2011_23_6_a1,
     author = {A. P. Mikhailov and A. P. Petrov},
     title = {Behavioral hypotheses and mathematical modeling in humanitarian sciences},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
TI  - Behavioral hypotheses and mathematical modeling in humanitarian sciences
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 18
EP  - 32
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/
LA  - ru
ID  - MM_2011_23_6_a1
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%T Behavioral hypotheses and mathematical modeling in humanitarian sciences
%J Matematičeskoe modelirovanie
%D 2011
%P 18-32
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/
%G ru
%F MM_2011_23_6_a1
A. P. Mikhailov; A. P. Petrov. Behavioral hypotheses and mathematical modeling in humanitarian sciences. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/

[1] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Nauka, M., 2001, 320 pp. | Zbl

[2] Samarskii A. A., Mikhailov A. P., “Matematicheskoe modelirovanie v informatsionnuyu epokhu”, Vestnik RAN, 74:9 (2004), 781–784

[3] Sadovnichii V. A., Gumanitarnoe obrazovanie v Rossii: mysli vslukh, Vystuplenie na vserossiiskom soveschanii – konferentsii “Traditsii i innovatsii v obrazovanii: gumanitarnoe izmerenie”, MGU, Moskva, 12 fevralya 2007 g.

[4] Samarskii A. A., Mikhailov A. P., “Metodologicheskie osnovy modelirovaniya sotsialnykh protsessov: predely vozmozhnogo”, Matematicheskoe modelirovanie sotsialnykh protsessov, eds. V. I. Dobrenkov, A. A. Samarskii, 2000

[5] Mikhailov A. P., Petrov A. P., Aleshin D. A., “Matematicheskie modeli i algoritmy opredeleniya granits rynka s pomoschyu testa gipoteticheskogo monopolista”, Analiz tovarnykh rynkov v antimonopolnom regulirovanii. Tekhnologii i algoritmy, ed. D. A. Aleshin, FAS Rossii, Market DS Korporeishn, M., 2007, 20–54

[6] Mikhailov A. P., Petrov A. P., Aleshin D. A., “Antimonopolnaya deyatelnost i matematicheskoe modelirovanie”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2007, no. 4, 12–21

[7] Mikhailov A. P., “Matematicheskoe modelirovanie vlasti v ierarkhicheskikh strukturakh”, Matem. modelirovanie, 6:6 (1994), 108–138

[8] Mikhailov A. P., Modelirovanie sistemy “vlast-obschestvo”, Fizmatlit, M., 2006, 144 pp.

[9] Mikhailov A. P., “Model korrumpirovannykh vlastnykh ierarkhii”, Matem. modelirovanie, 11:1 (1999), 3–19 | MR

[10] Mikhailov A. P., Lankin D. F., “O konstruktsiyakh vlastnykh ierarkhii”, Matematicheskoe modelirovanie, 21:8 (2009), 108–120 | MR | Zbl

[11] Mikhailov A. P., Lankin D. F., “Modelirovanie optimalnykh strategii ogranicheniya korruptsii”, Matematicheskoe modelirovanie, 18:12 (2006), 115–124 | Zbl

[12] Dmitriev M. G., Zhukova G. S., Petrov A. P., “Asimptoticheskii analiz modeli “vlast-obschestvo” dlya sluchaya dvukh ustoichivykh raspredelenii vlasti”, Matematicheskoe modelirovanie, 16:5 (2004), 23–34 | MR

[13] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Optimalnyi ob'em vlastnykh polnomochii v sotsialno-ekonomicheskoi ierarkhii po kriteriyu udelnogo potrebleniya”, Informatsionnye tekhnologii i vychislitelnye sistemy, 4, Izd-vo LKI, M., 2007, 4–11

[14] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Uchet deistviya korruptsii v statsionarnoi modeli “vlast-obschestvo-ekonomika”, I”, Sotsialnaya politika i sotsiologiya, 2009, no. 5, 378–387, M.: Izd-vo RGSU

[15] Mikhailov A. P., Maslov A. I., Yukhno L. F., “Dinamicheskaya model konkurentsii mezhdu politicheskimi silami”, DAN, 37:4 (2000), 469–473

[16] Mikhailov A. P., Yukhno L. F., “Prosteishaya model ustanovleniya ravnovesiya mezhdu dvumya vetvyami vlasti”, Matematicheskoe modelirovanie, 13:1 (2001), 65–75 | MR

[17] Mikhailov A. P., Yukhno L. F., Maslov A. I., Popova A. V., “Politicheskoe sopernichestvo: modeli i zdravyi smysl”, Matematicheskoe modelirovanie sotsialnykh protsessov, Sb., Vyp. 3, MGU, M., 2001, 153–171

[18] Shvedovskii V. A., “Dinamicheskaya model elektoralnogo povedeniya”, Matematicheskoe modelirovanie, 12:8 (2000), 46–56 | MR

[19] Mikhailov A. P., Shvedovskii V. A., Maslov A. I., Kovalev V. F., “Obobschennaya model elektoralnogo povedeniya i ee primenenie k izucheniyu etnopoliticheskikh konfliktov”, Matematicheskoe modelirovanie, 15:8 (2003), 39–56 | MR | Zbl

[20] Mikhailov A. P., Shvedovskii V. A., “Matematicheskoe modelirovanie regionalnykh konfliktov v kontekste globalizatsii (na primere Severnogo Kavkaza)”, Vestnik Moskovskogo univer-siteta. Seriya 18. Sotsiologiya i politologiya, 2005, no. 1, 186–197

[21] Shvedovskii V. A., Mikhailova P. A., “Postroenie modeli vzaimodeistviya elektoratov”, Matematicheskoe modelirovanie, 20:7 (2008), 107–118

[22] Shvedovskii V. A., Mikhailova P. A., “Veduschii i vedomyi elektorat v protsesse vybora pozitsii”, Matematicheskoe modelirovanie sotsialnykh protsessov, vyp. 10, ed. A. P. Mikhailov, KDU, M., 2008, 451–457

[23] Shvedovskii V. A., Mikhailova P. A., “Dinamika vzaimodeistvuyuschikh elektoratov v okrestnosti polozheniya ravnovesiya”, Matematicheskoe modelirovanie, 21:7 (2009), 43–54

[24] Petrov A. P., “O modeli “vlast-obschestvo” s periodicheskoi funktsiei reaktsii grazhdanskogo obschestva”, Matematicheskoe modelirovanie, 20:11 (2008), 80–88 | Zbl

[25] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Modelirovanie vliyaniya korruptsii v sisteme “vlast-obschestvo””, Chelovecheskii kapital, 2009, no. 1(9), 208–216 | MR

[26] Krasnoschekov P. S., “Prosteishaya matematicheskaya model povedeniya. Psikhologiya konformizma”, Matematicheskoe modelirovanie, 10:7 (1998), 76–92

[27] Rashevsky N., Mathematical biology of social behavior, Chicago, 1951 | MR | Zbl

[28] Rashevskii N., “Dve modeli: podrazhatelnoe povedenie i raspredelenie statusa”, Matematicheskie metody v sovremennoi burzhuaznoi sotsiologii, M., 1966

[29] Homans G., “Social behavior as exchange”, Interpersonal Dynamics, eds. W. G. Bennis, E. H. Schein et. al., Illinois, 1964

[30] Khomans Dzh., “Sotsialnoe povedenie kak obmen”, Sovremennaya zarubezhnaya sotsialnaya psikhologiya, Izdatelstvo Moskovskogo universiteta, M., 1984, 82–91

[31] Festinger L., Schachter S., Back K., Social Pressures in Informal Groups; a Study of Human Factors in Housing, Stanford University Press, Palo Alto–California, 1950

[32] Simon H. A., Models of Man: Social and Rational, John Wiley and Sons, N.Y., 1957 | MR | Zbl

[33] Schelling T., “Dynamic Models of Segregation”, Journal of Mathematical Sociology, 1 (1971), 143–186 | DOI

[34] Petrov A. A., Pospelov I. G., Shananin A. A., Opyt matematicheskogo modelirovaniya ekonomiki, Energoatomizdat, M., 1996 | MR | Zbl

[35] Vasin A. A., “Evolyutsionnaya teoriya igr i ekonomika. I: Printsipy optimalnosti i modeli dinamiki povedeniya”, Zhurnal novoi ekonomicheskoi assotsiatsii, 2009, no. 3–4, 10–27

[36] Aleskerov F. T., Intervalnoe otsenivanie i vybor v problemakh prinyatiya reshenii, Tezisy dokladov Vsesoyuznoi konferentsii “Metody sistemnogo analiza”, Nauka, M., 1981 | MR