Behavioral hypotheses and mathematical modeling in humanitarian sciences
Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 18-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The specific features of mathematical modeling in social sciences are discussed, attention is paid to hypotheses concerning the individual and collective behavior. Examples of such hypotheses are given.
Keywords: mathematical modeling, humanitarian sciences, behavioral hypotheses, imitative behavior.
@article{MM_2011_23_6_a1,
     author = {A. P. Mikhailov and A. P. Petrov},
     title = {Behavioral hypotheses and mathematical modeling in humanitarian sciences},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     year = {2011},
     volume = {23},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
TI  - Behavioral hypotheses and mathematical modeling in humanitarian sciences
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 18
EP  - 32
VL  - 23
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/
LA  - ru
ID  - MM_2011_23_6_a1
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%T Behavioral hypotheses and mathematical modeling in humanitarian sciences
%J Matematičeskoe modelirovanie
%D 2011
%P 18-32
%V 23
%N 6
%U http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/
%G ru
%F MM_2011_23_6_a1
A. P. Mikhailov; A. P. Petrov. Behavioral hypotheses and mathematical modeling in humanitarian sciences. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a1/

[1] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Nauka, M., 2001, 320 pp. | Zbl

[2] Samarskii A. A., Mikhailov A. P., “Matematicheskoe modelirovanie v informatsionnuyu epokhu”, Vestnik RAN, 74:9 (2004), 781–784

[3] Sadovnichii V. A., Gumanitarnoe obrazovanie v Rossii: mysli vslukh, Vystuplenie na vserossiiskom soveschanii – konferentsii “Traditsii i innovatsii v obrazovanii: gumanitarnoe izmerenie”, MGU, Moskva, 12 fevralya 2007 g.

[4] Samarskii A. A., Mikhailov A. P., “Metodologicheskie osnovy modelirovaniya sotsialnykh protsessov: predely vozmozhnogo”, Matematicheskoe modelirovanie sotsialnykh protsessov, eds. V. I. Dobrenkov, A. A. Samarskii, 2000

[5] Mikhailov A. P., Petrov A. P., Aleshin D. A., “Matematicheskie modeli i algoritmy opredeleniya granits rynka s pomoschyu testa gipoteticheskogo monopolista”, Analiz tovarnykh rynkov v antimonopolnom regulirovanii. Tekhnologii i algoritmy, ed. D. A. Aleshin, FAS Rossii, Market DS Korporeishn, M., 2007, 20–54

[6] Mikhailov A. P., Petrov A. P., Aleshin D. A., “Antimonopolnaya deyatelnost i matematicheskoe modelirovanie”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2007, no. 4, 12–21

[7] Mikhailov A. P., “Matematicheskoe modelirovanie vlasti v ierarkhicheskikh strukturakh”, Matem. modelirovanie, 6:6 (1994), 108–138

[8] Mikhailov A. P., Modelirovanie sistemy “vlast-obschestvo”, Fizmatlit, M., 2006, 144 pp.

[9] Mikhailov A. P., “Model korrumpirovannykh vlastnykh ierarkhii”, Matem. modelirovanie, 11:1 (1999), 3–19 | MR

[10] Mikhailov A. P., Lankin D. F., “O konstruktsiyakh vlastnykh ierarkhii”, Matematicheskoe modelirovanie, 21:8 (2009), 108–120 | MR | Zbl

[11] Mikhailov A. P., Lankin D. F., “Modelirovanie optimalnykh strategii ogranicheniya korruptsii”, Matematicheskoe modelirovanie, 18:12 (2006), 115–124 | Zbl

[12] Dmitriev M. G., Zhukova G. S., Petrov A. P., “Asimptoticheskii analiz modeli “vlast-obschestvo” dlya sluchaya dvukh ustoichivykh raspredelenii vlasti”, Matematicheskoe modelirovanie, 16:5 (2004), 23–34 | MR

[13] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Optimalnyi ob'em vlastnykh polnomochii v sotsialno-ekonomicheskoi ierarkhii po kriteriyu udelnogo potrebleniya”, Informatsionnye tekhnologii i vychislitelnye sistemy, 4, Izd-vo LKI, M., 2007, 4–11

[14] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Uchet deistviya korruptsii v statsionarnoi modeli “vlast-obschestvo-ekonomika”, I”, Sotsialnaya politika i sotsiologiya, 2009, no. 5, 378–387, M.: Izd-vo RGSU

[15] Mikhailov A. P., Maslov A. I., Yukhno L. F., “Dinamicheskaya model konkurentsii mezhdu politicheskimi silami”, DAN, 37:4 (2000), 469–473

[16] Mikhailov A. P., Yukhno L. F., “Prosteishaya model ustanovleniya ravnovesiya mezhdu dvumya vetvyami vlasti”, Matematicheskoe modelirovanie, 13:1 (2001), 65–75 | MR

[17] Mikhailov A. P., Yukhno L. F., Maslov A. I., Popova A. V., “Politicheskoe sopernichestvo: modeli i zdravyi smysl”, Matematicheskoe modelirovanie sotsialnykh protsessov, Sb., Vyp. 3, MGU, M., 2001, 153–171

[18] Shvedovskii V. A., “Dinamicheskaya model elektoralnogo povedeniya”, Matematicheskoe modelirovanie, 12:8 (2000), 46–56 | MR

[19] Mikhailov A. P., Shvedovskii V. A., Maslov A. I., Kovalev V. F., “Obobschennaya model elektoralnogo povedeniya i ee primenenie k izucheniyu etnopoliticheskikh konfliktov”, Matematicheskoe modelirovanie, 15:8 (2003), 39–56 | MR | Zbl

[20] Mikhailov A. P., Shvedovskii V. A., “Matematicheskoe modelirovanie regionalnykh konfliktov v kontekste globalizatsii (na primere Severnogo Kavkaza)”, Vestnik Moskovskogo univer-siteta. Seriya 18. Sotsiologiya i politologiya, 2005, no. 1, 186–197

[21] Shvedovskii V. A., Mikhailova P. A., “Postroenie modeli vzaimodeistviya elektoratov”, Matematicheskoe modelirovanie, 20:7 (2008), 107–118

[22] Shvedovskii V. A., Mikhailova P. A., “Veduschii i vedomyi elektorat v protsesse vybora pozitsii”, Matematicheskoe modelirovanie sotsialnykh protsessov, vyp. 10, ed. A. P. Mikhailov, KDU, M., 2008, 451–457

[23] Shvedovskii V. A., Mikhailova P. A., “Dinamika vzaimodeistvuyuschikh elektoratov v okrestnosti polozheniya ravnovesiya”, Matematicheskoe modelirovanie, 21:7 (2009), 43–54

[24] Petrov A. P., “O modeli “vlast-obschestvo” s periodicheskoi funktsiei reaktsii grazhdanskogo obschestva”, Matematicheskoe modelirovanie, 20:11 (2008), 80–88 | Zbl

[25] Dmitriev M. G., Pavlov A. A., Petrov A. P., “Modelirovanie vliyaniya korruptsii v sisteme “vlast-obschestvo””, Chelovecheskii kapital, 2009, no. 1(9), 208–216 | MR

[26] Krasnoschekov P. S., “Prosteishaya matematicheskaya model povedeniya. Psikhologiya konformizma”, Matematicheskoe modelirovanie, 10:7 (1998), 76–92

[27] Rashevsky N., Mathematical biology of social behavior, Chicago, 1951 | MR | Zbl

[28] Rashevskii N., “Dve modeli: podrazhatelnoe povedenie i raspredelenie statusa”, Matematicheskie metody v sovremennoi burzhuaznoi sotsiologii, M., 1966

[29] Homans G., “Social behavior as exchange”, Interpersonal Dynamics, eds. W. G. Bennis, E. H. Schein et. al., Illinois, 1964

[30] Khomans Dzh., “Sotsialnoe povedenie kak obmen”, Sovremennaya zarubezhnaya sotsialnaya psikhologiya, Izdatelstvo Moskovskogo universiteta, M., 1984, 82–91

[31] Festinger L., Schachter S., Back K., Social Pressures in Informal Groups; a Study of Human Factors in Housing, Stanford University Press, Palo Alto–California, 1950

[32] Simon H. A., Models of Man: Social and Rational, John Wiley and Sons, N.Y., 1957 | MR | Zbl

[33] Schelling T., “Dynamic Models of Segregation”, Journal of Mathematical Sociology, 1 (1971), 143–186 | DOI

[34] Petrov A. A., Pospelov I. G., Shananin A. A., Opyt matematicheskogo modelirovaniya ekonomiki, Energoatomizdat, M., 1996 | MR | Zbl

[35] Vasin A. A., “Evolyutsionnaya teoriya igr i ekonomika. I: Printsipy optimalnosti i modeli dinamiki povedeniya”, Zhurnal novoi ekonomicheskoi assotsiatsii, 2009, no. 3–4, 10–27

[36] Aleskerov F. T., Intervalnoe otsenivanie i vybor v problemakh prinyatiya reshenii, Tezisy dokladov Vsesoyuznoi konferentsii “Metody sistemnogo analiza”, Nauka, M., 1981 | MR