Efficient numerical method for solving a~special class of integro-differential equations connected with Levy models
Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 95-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an efficient numerical method for solving a special class of partial integro-differential equations is developed. The problems under consideration arise in applications together with computation of the special functionals of Levy processes. The method is based on the efficient approximating Wiener–Hopf factorization and a numerical inversion of the Laplace transform.
Keywords: numerical methods, modelling, Levy processes, integro-differential equations, Wiener–Hopf factorization.
@article{MM_2011_23_5_a6,
     author = {O. E. Kudryavtsev},
     title = {Efficient numerical method for solving a~special class of integro-differential equations connected with {Levy} models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_5_a6/}
}
TY  - JOUR
AU  - O. E. Kudryavtsev
TI  - Efficient numerical method for solving a~special class of integro-differential equations connected with Levy models
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 95
EP  - 104
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_5_a6/
LA  - ru
ID  - MM_2011_23_5_a6
ER  - 
%0 Journal Article
%A O. E. Kudryavtsev
%T Efficient numerical method for solving a~special class of integro-differential equations connected with Levy models
%J Matematičeskoe modelirovanie
%D 2011
%P 95-104
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_5_a6/
%G ru
%F MM_2011_23_5_a6
O. E. Kudryavtsev. Efficient numerical method for solving a~special class of integro-differential equations connected with Levy models. Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 95-104. http://geodesic.mathdoc.fr/item/MM_2011_23_5_a6/

[1] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[2] Bogomolov S. V., “Metod chastits. Neszhimaemaya zhidkost”, Matem. modelirovanie, 15:1 (2003), 46–58 | MR | Zbl

[3] Dubkov A. A., Spanolo B., “Statsionarnye veroyatnostnye kharakteristiki superdiffuzii”, Aktualnye problemy statisticheskoi radiofiziki, 5 (2006), 55–65

[4] Cont R., Tankov P., Financial modelling with jump processes, Chapman and Hall/CRC Press, New York, 2004, 527 pp. | MR

[5] Kudryavtsev O. E., Levendorskii S. Z., “Fast and accurate pricing of barrier options under Levy processes”, Finance Stoch., 13:4 (2009), 531–562 | DOI | MR | Zbl

[6] Kudryavtsev O. E., “Vychislenie tsen barernykh i amerikanskikh optsionov v modelyakh Levi”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:2 (2010), 210–220

[7] Kudryavtsev O. E., “Bystryi i effektivnyi metod otsenivaniya barernykh optsionov v modelyakh Levi s pereklyucheniem rezhimov po parametram protsessa”, Nauchno-tekhnicheskie vedomosti SPbGPU. Seriya “Informatika. Telekommunikatsii. Upravlenie”, 93:1 (2010), 136–141

[8] Kudryavtsev O. E., “Effektivnyi chislennyi metod otsenivaniya amerikanskikh optsionov v modelyakh Levi s pereklyucheniem rezhimov po parametram protsessa”, Vestnik RGUPS, 39:3 (2010), 158–167

[9] Baxendale P., Stochastic differential equations: theory and applications, Interdisciplinary Mathematical Sciences, 2, World Scientific, Hackensack, NJ, 2007, 393 pp. | MR | Zbl

[10] Boyarchenko S. I., Levendorskii S. Z., Non-Gaussian Merton-Black-Scholes theory, World Scientific, River Edge, NJ, 2002, 398 pp. | MR | Zbl

[11] Boyer R. H., “An integro-differential equation for a Markov process”, J. Soc. Industr. and Appl. Math., 7:4 (1959), 473–486 | DOI | MR | Zbl

[12] Bakshia G., Panayotov G., “First-Passage Probability, Jump Models, and Intra-Horizon Risk”, Journal of Financial Economics, 95:1 (2010), 20–40 | DOI

[13] Novikov A., Melchers R. E., Shinjikashvili E., Kordzakhia N., “First passage time of filtered Poisson process with exponential shape function”, Probab. Eng. Mech., 20:1 (2005), 57–65 | DOI

[14] Sato K., Levy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999, 486 pp. | MR | Zbl

[15] Abate J., Whitt W., “A unified framework for numerically inverting Laplace transforms”, INFORMS J. Comput., 18 (2006), 408–421 | DOI | MR

[16] Abate J., Whitt W., “Numerical inversion of Laplace transforms of probability distributions”, ORSA Journal on Computing, 7 (1995), 36–43 | Zbl