Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_5_a1, author = {G. G. Yelenin and P. I. Shlyakhov}, title = {The geometric structure of the parameter space of the three-stage symplectic {Runge--Kutta} methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {16--34}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/} }
TY - JOUR AU - G. G. Yelenin AU - P. I. Shlyakhov TI - The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods JO - Matematičeskoe modelirovanie PY - 2011 SP - 16 EP - 34 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/ LA - ru ID - MM_2011_23_5_a1 ER -
%0 Journal Article %A G. G. Yelenin %A P. I. Shlyakhov %T The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods %J Matematičeskoe modelirovanie %D 2011 %P 16-34 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/ %G ru %F MM_2011_23_5_a1
G. G. Yelenin; P. I. Shlyakhov. The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 16-34. http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/
[1] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[2] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, 2004, 379 pp. | MR | Zbl
[3] F. M. Lasagni, “Canonical Runge-Kutta methods”, ZAMM, 39 (1988), 952–953 | MR | Zbl
[4] J. M. Sanz-Serna, “Runge-Kutta schemes for Hamiltonian systems”, BIT, 28 (1988), 877–883 | DOI | MR | Zbl
[5] Y. B. Suris, “On the conservation of the symplectic structure in the numerical solutions of Hamilton systems”, Numerical solutions of ordinary differential equations, ed. S. S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Science, Moscow, 1988, 148–160 | MR | Zbl
[6] W. Oewer, M. Sofrouniou, Symplectic Runge-Kutta schemes. II. Classification of symmetric methods, preprint, University of Paderborn, 1997, 47 pp.