The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods
Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 16-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometric structure of the parameter space of the three-stage symplectic Runge–Kutta methods is established. The elemets of the structure are the loci, corresponding to the methods of different orders of approximation.
Keywords: symplectic Runge–Kutta methods, order of approximation, structure of parameter space.
@article{MM_2011_23_5_a1,
     author = {G. G. Yelenin and P. I. Shlyakhov},
     title = {The geometric structure of the parameter space of the three-stage symplectic {Runge--Kutta} methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--34},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/}
}
TY  - JOUR
AU  - G. G. Yelenin
AU  - P. I. Shlyakhov
TI  - The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 16
EP  - 34
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/
LA  - ru
ID  - MM_2011_23_5_a1
ER  - 
%0 Journal Article
%A G. G. Yelenin
%A P. I. Shlyakhov
%T The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods
%J Matematičeskoe modelirovanie
%D 2011
%P 16-34
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/
%G ru
%F MM_2011_23_5_a1
G. G. Yelenin; P. I. Shlyakhov. The geometric structure of the parameter space of the three-stage symplectic Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 16-34. http://geodesic.mathdoc.fr/item/MM_2011_23_5_a1/

[1] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[2] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, 2004, 379 pp. | MR | Zbl

[3] F. M. Lasagni, “Canonical Runge-Kutta methods”, ZAMM, 39 (1988), 952–953 | MR | Zbl

[4] J. M. Sanz-Serna, “Runge-Kutta schemes for Hamiltonian systems”, BIT, 28 (1988), 877–883 | DOI | MR | Zbl

[5] Y. B. Suris, “On the conservation of the symplectic structure in the numerical solutions of Hamilton systems”, Numerical solutions of ordinary differential equations, ed. S. S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Science, Moscow, 1988, 148–160 | MR | Zbl

[6] W. Oewer, M. Sofrouniou, Symplectic Runge-Kutta schemes. II. Classification of symmetric methods, preprint, University of Paderborn, 1997, 47 pp.