Regularization algorithms of the statistical estimation of function in problem of geological modelling
Matematičeskoe modelirovanie, Tome 23 (2011) no. 4, pp. 23-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper various variants regularization algorithms are used for a solution of problems of a parameter estimation of geological model, namely position of layer roof and a layer sole, and also trends defining character of a modification of filtrational and capacity properties. Basic of methods is approximation of estimated functions by means of methods which are optimum from the informational point of view, i.e. ensure the given accuracy of expansion at the minimum number of parameters of approximation. In particular, for function of final smoothness is a spline-approximation. It is shown in paper that the spline-approximation, which parameters are defined by the maximum likelihood method, represents an estimation of average value of stochastic process. The average estimation of accuracy of method which shows is received that with magnification of number of parameters of approximation decreases the error of approximation and the error of statistical estimation increases. Thus, the number of parameters of approximation is regularization parameter. Convergence of algorithms to estimated magnitudes on probability is proved. The algorithm of definition of parameter of a regularization by means of criteria of check of statistical hypotheses is offered and realized. Results of modeling and real calculation are reduced.
Keywords: regularization, spline-approximation, stochastic process, geological modelling, least-squares method.
Mots-clés : filtration
@article{MM_2011_23_4_a1,
     author = {D. A. Lavrik and I. R. Minniakhmetov and A. Kh. Pergament},
     title = {Regularization algorithms of the statistical estimation of function in problem of geological modelling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_4_a1/}
}
TY  - JOUR
AU  - D. A. Lavrik
AU  - I. R. Minniakhmetov
AU  - A. Kh. Pergament
TI  - Regularization algorithms of the statistical estimation of function in problem of geological modelling
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 23
EP  - 40
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_4_a1/
LA  - ru
ID  - MM_2011_23_4_a1
ER  - 
%0 Journal Article
%A D. A. Lavrik
%A I. R. Minniakhmetov
%A A. Kh. Pergament
%T Regularization algorithms of the statistical estimation of function in problem of geological modelling
%J Matematičeskoe modelirovanie
%D 2011
%P 23-40
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_4_a1/
%G ru
%F MM_2011_23_4_a1
D. A. Lavrik; I. R. Minniakhmetov; A. Kh. Pergament. Regularization algorithms of the statistical estimation of function in problem of geological modelling. Matematičeskoe modelirovanie, Tome 23 (2011) no. 4, pp. 23-40. http://geodesic.mathdoc.fr/item/MM_2011_23_4_a1/

[1] Karhunen K., “Zur Spektraltheorie stocgastischer Prozesse”, Ann. Acad. Sci Fennicae Ser. A1, 1946, no. 34, 7 pp. | MR | Zbl

[2] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR

[3] Kramer G., Lidbetter M., Statsionarnye sluchainye protsessy. Svoistva vyborochnykh funktsii i ikh prilozheniya, Mir, M., 1969

[4] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[5] Grenander U., Sluchainye protsessy i statisticheskie vyvody, Izd-vo inostr. lit., M., 1961 | MR

[6] Petrov A. P., “Otsenki lineinykh funktsionalov dlya resheniya nekotorykh obratnykh zadach”, Zh. vychisl. matem. i matem. fiz., 7:3 (1967), 648–654 | MR | Zbl

[7] Babenko K. I., Ob odnom podkhode k otsenke kachestva vychislitelnykh algoritmov, preprint No 7, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1974

[8] Babenko K. I., O nekotorykh svoistvakh vychislitelnykh algoritmov, preprint No 29, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1977 | MR

[9] Babenko K. I., Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–I., 2002

[10] Ryabenkii V. S., Lokalnye formuly gladkogo vospolneniya i gladkoi interpolyatsii funktsii po ikh znacheniyam v uzlakh neravnomernoi pryamougolnoi setki, preprint No 21, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1974

[11] Tikhonov A. N., Arsenin V. Ya., Dumova A. A. i dr., O mnogotselevoi problemno-orientirovannoi sisteme obrabotki rezultatov eksperimentov, preprint No 142, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1976

[12] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl

[13] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[14] Marchenko N. A., Pergament A. Kh., Nekotorye voprosy teorii priblizhenii i zadachi filtratsii, preprint No 178, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1979

[15] Pergament A. Kh., Telkovskaya O. V., Metod regulyarizatsii i metod maksimalnogo pravdopodobiya pri reshenii integralnykh uravnenii I-go roda, preprint No 111, In. prikl. matem. im. M. V. Keldysha AN SSSR, M., 1979 | MR

[16] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[17] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i Svyaz, M., 1985 | MR

[18] Golub Zh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999