Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_3_a7, author = {I. V. Popov and I. V. Fryazinov}, title = {Finite-difference method for computation of the {3-D} gas dynamics equations with artificial viscosity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {89--100}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/} }
TY - JOUR AU - I. V. Popov AU - I. V. Fryazinov TI - Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity JO - Matematičeskoe modelirovanie PY - 2011 SP - 89 EP - 100 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/ LA - ru ID - MM_2011_23_3_a7 ER -
%0 Journal Article %A I. V. Popov %A I. V. Fryazinov %T Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity %J Matematičeskoe modelirovanie %D 2011 %P 89-100 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/ %G ru %F MM_2011_23_3_a7
I. V. Popov; I. V. Fryazinov. Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 89-100. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/
[1] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl
[2] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl
[3] Popov I. V., Fryazinov I. V., “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:5 (2010), 57–66 | Zbl
[4] Milan Kucharik, Richard Liska, Stanly Steinberg, Burton Wendroff, “Optimally-stable second-order accurate difference schemes for non-linear conservation laws in 3D”, Applied Numerical Mathematics, 56 (2006), 589–607 | DOI | MR | Zbl