Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity
Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 89-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper present a new numerical method for the solution of the gas dynamics problems for 3-D systems in Eulerian variables. The proposed method uses the approximation $O(\tau^2+h^2_x+h^2_y+h^2_z)$ in the areas of the solution's smoothness and beyond the compression waves, $\tau$ for the time step, $h_x$, $h_y$, $h_z$ for the space variables steps. In the proposed difference scheme in addition to the Lax–Wendroff corrections, artificial viscosity $\mu$ monotonizing the scheme is introduced. The viscosity is obtained from the conditions of the maximum principle. The results of computation of three-dimensional test problem for Euler equation are presented.
Keywords: numerical method, difference scheme, gas dynamics, adaptive artificial viscosity.
@article{MM_2011_23_3_a7,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Finite-difference method for computation of the {3-D} gas dynamics equations with artificial viscosity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 89
EP  - 100
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/
LA  - ru
ID  - MM_2011_23_3_a7
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity
%J Matematičeskoe modelirovanie
%D 2011
%P 89-100
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/
%G ru
%F MM_2011_23_3_a7
I. V. Popov; I. V. Fryazinov. Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 89-100. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a7/

[1] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl

[2] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl

[3] Popov I. V., Fryazinov I. V., “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:5 (2010), 57–66 | Zbl

[4] Milan Kucharik, Richard Liska, Stanly Steinberg, Burton Wendroff, “Optimally-stable second-order accurate difference schemes for non-linear conservation laws in 3D”, Applied Numerical Mathematics, 56 (2006), 589–607 | DOI | MR | Zbl