Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_3_a2, author = {B. K. Buzdov}, title = {Modelling of the cryodestruction of biological tissue}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {27--37}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a2/} }
B. K. Buzdov. Modelling of the cryodestruction of biological tissue. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 27-37. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a2/
[1] Baissalo R., Sandison G. A., Donnelly B. J., Saliken J. C., McKinnon J. G., Muldrew K., Rewcastle J. C., “A semi–empirical treatment planning model for optimization of multiprobe cryosurgery”, Phys. Med. Biol., 45 (2000), 1085–1098 | DOI
[2] Rossi M. R., Rabin Y., “Experimental verification of numerical simulations of cryosurgery with application to computerized planning”, Phys. Med. Biol., 52 (2007), 4553–4567 | DOI
[3] Rabin Y., Shitzer A., “Numerical solution of the multidimensional freezing problem during cryosurgery”, ASME J. Biomech. Eng., 120:1 (1998), 32–37 | DOI
[4] Berezovskii A. A., “Dvumernye matematicheskie modeli kriodestruktsii biotkani”, Matematicheskoe modelirovanie fizicheskikh protsessov, Sb. nauch. tr. in-t matematiki AN USSR, Kiev, 1989
[5] Mitropolskii Yu. A., Berezovskii A. A., “Zadachi Stefana s predelnym statsionarnym sostoyaniem v spetselektrometallurgii, kriokhirurgii i fizike morya”, Mat. fizika i nelinein. mekhanika, 1987, no. 7, 50–60
[6] Berezovskii A. A., “Odnomernaya lokalnaya zadacha Stefana ploskoparallelnoi kriodestruktsii biologicheskoi tkani”, Zadachi teploprovodnosti s podvizhnymi granitsami, In-t matematiki AN USSR, Kiev, 1985, 3–8 | MR
[7] Berezovskii A. A., Zhuraev K. O., Yurtin I. I., “Nestatsionarnye zadachi sfericheski-simmetrichnoi gipotermii biotkani”, Zadachi Stefana so svobodnymi granitsami, In-t matematiki AN USSR preprint, 27, Kiev, 1990, 9–20 | MR
[8] Berezovskii A. A., Leontev Yu. V., “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya, 3, Naukova dumka, Kiev, 1989, 7–13
[9] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, ZhVM i MF, 5:5 (1965), 828–840 | MR | Zbl
[10] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVM i MF, 5:5 (1965), 816–827 | MR | Zbl
[11] Budak B. M., Vasilev F. P., Uspenskii A. B., “Raznostnye metody resheniya nekotorykh kraevykh zadach tipa Stefana”, Chislennye metody v gazovoi dinamike, 4, Izd-vo MGU, M., 1965, 139–183 | MR
[12] Buzdov B. K., “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya, Institut matematiki AN Ukrainy, Kiev, 1993
[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR