Simulation of quantum dynamics of wave packet in semiclassical limit
Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new algorithm for modeling of quantum dynamics of wave packets in semiclassical limit was formulated and justified. The algorithm is valid in the case of two-particle systems and in the case of single particle in any arbitrary central potential. The profile of wave packet depending on time for single wave packet evolving in 1D Morse potential was obtained in the direct computer simulations using new algorithm. The results were compared with calculation which was previously performed using IVR method.
Keywords: numerical simulation, quantum dynamics, quantum wave packet, semiclassical limit, Morse potential.
@article{MM_2011_23_2_a2,
     author = {K. S. Arakelov},
     title = {Simulation of quantum dynamics of wave packet in semiclassical limit},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a2/}
}
TY  - JOUR
AU  - K. S. Arakelov
TI  - Simulation of quantum dynamics of wave packet in semiclassical limit
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 41
EP  - 52
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a2/
LA  - ru
ID  - MM_2011_23_2_a2
ER  - 
%0 Journal Article
%A K. S. Arakelov
%T Simulation of quantum dynamics of wave packet in semiclassical limit
%J Matematičeskoe modelirovanie
%D 2011
%P 41-52
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_2_a2/
%G ru
%F MM_2011_23_2_a2
K. S. Arakelov. Simulation of quantum dynamics of wave packet in semiclassical limit. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 41-52. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a2/

[1] J. Z. H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore, 1999

[2] Z. Sun, X. Lin, S. Y. Lee, D. H. Zhang, “A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics: Application to the $\mathrm{H+O}_2$ Reaction”, J. Physical Chemistry A, 113 (2009), 4145–4154 | DOI

[3] W. H. Miller, “Including Quantum Effects in the Dynamics of Complex (i.e., Large) Molecular Systems”, Journal of Chemical Physics, 125 (2006), 132305, 8 pp. | DOI

[4] C. Venkataraman, W. H. Miller, “Chemical Reaction Rates Using the Semiclassical Van-Vleck Initial Value Representation”, Journal of Chemical Physics, 126 (2007), 094104, 8 pp. | DOI

[5] K. S. Arakelov, “Modelirovanie kvantovoi dinamiki trekhchastichnykh sistem v kvaziklassicheskom priblizhenii metodom kollektivnogo povedeniya”, Matematicheskoe modelirovanie, 21:5 (2009), 83–91 | Zbl

[6] K. S. Arakelov, “Modelirovanie kvantovogo uprugogo rasseyaniya pri atomnykh stolknoveniyakh v kvaziklassicheskom priblizhenii s uchetom interferentsionnykh effektov”, Mikroelektronika, 38:5 (2009), 331–343

[7] Yu. I. Ozhigov, “Modelirovanie kvantovoi dinamiki cherez klassicheskoe kollektivnoe povedenie”, Mikroelektronika, 36:3 (2007), 222–235

[8] M. Brack, R. K. Bhaduri, Semiclassical Physics, Addison-Wesley, Reading, Mass., 1997, 444 pp.

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[10] V. I. Tatarskii, “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139:4 (1983), 587–619 | MR

[11] I. Sh. Averbukh, N. F. Perelman, “Dinamika volnovykh paketov vysokovozbuzhdennykh sostoyanii atomov i molekul”, UFN, 42:7 (1991), 41–81

[12] Kh. A. Takha, Vvedenie v issledovanie operatsii, Vilyams, M., 2005

[13] H. Wang, M. Thoss, K. Sorge, R. Gelabert, X. Gimenez, W. H. Miller, “Semiclassical Description of Quantum Coherence Effects and Their Quenching: A Forward-Backward Initial Value Representation Study”, Journal of Chemical Physics, 114 (2001), 2562–2571 | DOI