Wavelet study of localised structures in the ideal and viscous models
Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Localized structures singled out with the use of wavelet based algorithm from the shock capturing calculations for models of Euler and Reynolds with $k-\varepsilon$ turbulence model are analyzed. It is demonstrated that in the viscous model localized structures corresponding to the shock waves in Euler model are located with high accuracy. In the viscous model additional structures corresponding to vortices, to the boundary and mixing layers are located.
Keywords: wavelets, singularity detection, gas dynamic.
@article{MM_2011_23_1_a3,
     author = {A. L. Afendikov and A. E. Lutsky and A. V. Plenkin},
     title = {Wavelet study of localised structures in the ideal and viscous models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_1_a3/}
}
TY  - JOUR
AU  - A. L. Afendikov
AU  - A. E. Lutsky
AU  - A. V. Plenkin
TI  - Wavelet study of localised structures in the ideal and viscous models
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 41
EP  - 50
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_1_a3/
LA  - ru
ID  - MM_2011_23_1_a3
ER  - 
%0 Journal Article
%A A. L. Afendikov
%A A. E. Lutsky
%A A. V. Plenkin
%T Wavelet study of localised structures in the ideal and viscous models
%J Matematičeskoe modelirovanie
%D 2011
%P 41-50
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_1_a3/
%G ru
%F MM_2011_23_1_a3
A. L. Afendikov; A. E. Lutsky; A. V. Plenkin. Wavelet study of localised structures in the ideal and viscous models. Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/MM_2011_23_1_a3/

[1] Mazhukin V. I., Samarskii A. A., Kastelyanos O., Shapranov A. V., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matematicheskoe modelirovanie, 5:4 (1993), 32–56 | MR | Zbl

[2] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matematicheskoe modelirovanie, 7:12 (1995), 48–78 | MR | Zbl

[3] Breslavskii P. V., Mazhukin V. I., “Dinamicheski adaptiruyuschiesya setki dlya vzaimodeistvuyuschikh razryvnykh reshenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:4 (2007), 717–737 | MR | Zbl

[4] Vorozhtsov E. V., Yanenko N. N., Metody lokalizatsii osobennostei v vychislitelnoi gazodinamike, Nauka, Novosibirsk, 1985, 224 pp. | MR | Zbl

[5] Bazarov S. B., “Primenenie metodov obrabotki izobrazhenii v vychislitelnoi gazodinamike”, Trudy GraphiCon' 98, Moskva, 1998, 258–264

[6] Lina J.-M., “Daubechies wavelets: filters design and applications”, CRM-2449, ISAAC Conference, University of Delaware, June 1997

[7] Afendikov A. L., Gorbunova V. V., Levkovich-Maslyuk L. I., Plënkin A. V., Lokalizatsiya singulyarnostei gazodinamicheskikh polei pri pomoschi kompleksnykh i veschestvennykh veivletov, preprint No 98, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 2005, 24 pp.

[8] Afendikov A. L., Levkovich-Maslyuk L. I., Lutskii A. E., Plënkin A. V., “Lokalizatsiya razryvov v polyakh gazodinamicheskikh funktsii s pomoschyu veivlet analiza”, Matematicheskoe modelirovanie, 20:7 (2008), 65–84 | Zbl

[9] Afendikov A. L., Lutskii A. E., Plënkin A. V., Mnogomasshtabnyi analiz osobennostei gazodinamicheskikh polei, preprint No 98, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 2008, 20 pp.