Rigid body motion in a~resisting medium
Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 79-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proposed work presents next stage of the study of the problem of the plane-parallel motion of a rigid body interacting with resistant medium only through the flat plate of its external surface. During of construction of mathematical model the information of the rigid body motion in a jet flow under assumptions of quasi-stationary conditions is used. The motion of a medium is not studied but is considered such problem of the motion of a rigid body in which case the typical time of the motion the body around its centre of mass is commensurable since typical time of the motion of centre itself. The conditions to asymptotic stability of the rectilinear onward braking is fulfilled, new multivariable family phase portrait in space of quasi-velocities is received, the quantitative material for undertaking further natural experiment about motion of the flap circular cylinder is prepared.
Keywords: rigid body, resisting medium, integrability, self-oscillations, natural experiment.
@article{MM_2011_23_12_a5,
     author = {M. V. Shamolin},
     title = {Rigid body motion in a~resisting medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--104},
     publisher = {mathdoc},
     volume = {23},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_12_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Rigid body motion in a~resisting medium
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 79
EP  - 104
VL  - 23
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_12_a5/
LA  - ru
ID  - MM_2011_23_12_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Rigid body motion in a~resisting medium
%J Matematičeskoe modelirovanie
%D 2011
%P 79-104
%V 23
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_12_a5/
%G ru
%F MM_2011_23_12_a5
M. V. Shamolin. Rigid body motion in a~resisting medium. Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 79-104. http://geodesic.mathdoc.fr/item/MM_2011_23_12_a5/

[1] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp. | Zbl

[2] Eroshin V. A., Privalov V. A., Samsonov V. A., “Dve modelnye zadachi o dvizhenii tela v soprotivlyayuscheisya srede”, Sb. nauchn.-metod. statei po teoretich. mekhan., vyp. 18, Nauka, M., 1987, 75–78

[3] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izvestiya RAN. MZhG, 1995, no. 3, 23–27

[4] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, In-t mekhaniki MGU, M., 1986, 86 pp.

[5] Samsonov V. A., Eroshin V. A., Konstantinov V. A., Makarshin V. M., Dve modelnye zadachi o dvizhenii tela v srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU No 3427, In-t mekhaniki MGU, M., 1987, 27 pp. | Zbl

[6] Samsonov V. A., Shamolin M. V., Eroshin V. A., Makarshin V. M., Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU No 4396, In-t mekhaniki MGU, M., 1995, 41 pp.

[7] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 | MR | Zbl

[8] Samsonov V. A., Shamolin M. V., K zadache o tormozhenii tela v srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU No 4141, M., 1991, 48 pp.

[9] Samsonov V. A., Shamolin M. V., Modelnaya zadacha o dvizhenii tela v srede so struinym obtekaniem, Nauchnyi otchet In-ta mekhaniki MGU No 3969, M., 1990, 80 pp.

[10] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976, 495 pp. | MR

[11] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[12] Shamolin M. V., “K zadache o prostranstvennom tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Izvestiya RAN, MTT, 2006, no. 3, 45–57

[13] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Izd-vo “Ekzamen”, M., 2007, 352 pp.

[14] Shamolin M. V., Metody analiza klassov nekonservativnykh sistem v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, doktorskaya dissertatsiya, MGU, M., 2004, 329 pp.

[15] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Doklady RAN, 337:5 (1994), 611–614 | MR | Zbl

[16] Eroshin V. A., “Eksperimentalnoe issledovanie vkhoda uprugogo tsilindra v vodu s bolshoi skorostyu”, Izv. RAN, MZhG, 1992, no. 5, 20–30

[17] Lamb G., Gidrodinamika, Fizmatgiz, M., 1947, 928 pp.

[18] Prandtl L., Betz A., Ergebnisse der Aerodinamishen Versuchsanstalt zu Göttingen. B. 4. Lieferung, Munchen–Berlin–R. Oldenburg, 1932, 148 pp.

[19] Bivin Yu. K., Viktorov V. V., Stepanov L. P., “Issledovanie dvizheniya tverdogo tela v glinistoi srede”, Izv. AN SSSR, MTT, 1978, no. 2, 159–165

[20] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969, 349 pp.

[21] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988, 320 pp.

[22] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1992, no. 2, 52–56 | MR | Zbl

[23] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1993, no. 1, 68–71 | MR

[24] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1993, no. 2, 66–70 | MR | Zbl

[25] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Uspekhi matem. nauk, 52:3 (1997), 177–178 | MR | Zbl

[26] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Izd. 2-e, pererabotannoe i dopolnennoe, Izd-vo “Ekzamen”, M., 2007, 320 pp.