Nonlinear transverse oscillations of the space elevator’s tether
Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of free oscillations of superlong ($\sim$100 000 km) tether, anchored to the Earth's equator and extending above the geostationary orbit is investigated. Nonlinear transverse oscillations of the tether are considered in the rotating geographical axes, taking into account Earth’s gravitational centrifugal field. Continuous mathematical model of flexible inextensible tether with changing along the tether cross-sectional area is used. Numerical algorithms allowing study of the system motions for time intervals of dozens of main mode oscillations are developed. Various forms of restricted in the vicinity of vertical equilibrium motions are found, some scenarios of catastrophic instability development are defined. One of such scenarios is investigated analytically by constructing self-similar solution of some model problem.
Keywords: space elevator, space tether systems, space elevator dynamics, mathematical modeling of inextensible thread dynamics, self-similar solutions of partial differential equations.
@article{MM_2011_23_12_a0,
     author = {Yu. A. Sadov and A. B. Nuralieva},
     title = {Nonlinear transverse oscillations of the space elevator{\textquoteright}s tether},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {23},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_12_a0/}
}
TY  - JOUR
AU  - Yu. A. Sadov
AU  - A. B. Nuralieva
TI  - Nonlinear transverse oscillations of the space elevator’s tether
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 3
EP  - 19
VL  - 23
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_12_a0/
LA  - ru
ID  - MM_2011_23_12_a0
ER  - 
%0 Journal Article
%A Yu. A. Sadov
%A A. B. Nuralieva
%T Nonlinear transverse oscillations of the space elevator’s tether
%J Matematičeskoe modelirovanie
%D 2011
%P 3-19
%V 23
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_12_a0/
%G ru
%F MM_2011_23_12_a0
Yu. A. Sadov; A. B. Nuralieva. Nonlinear transverse oscillations of the space elevator’s tether. Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2011_23_12_a0/

[1] J. Pearson, “The orbital tower: a spacecraft launcher using the Earth's potential energy”, Acta Astronautica, 2:10 (1975), 785–799 | DOI

[2] Artukovič Ranko, The Space Elevator – physical principles, Patent No 02-1712-29122000 HAA

[3] V. V. Beletskii, M. B. Ivanov, E. I. Otstavnov, “Modelnaya zadacha o kosmicheskom lifte”, Kosmicheskie issledovaniya, 43:3 (2005), 157–160 | MR

[4] Ryotaro Ohkawa, Kenji Uchiyama, Hironori A. Fujii, “The effect of disturbances on space elevator dynamics with flexibility”, 61st International Astronautical Congress, Prague, CZ, IAC-10-D4.4.5

[5] P. Williams, “Dynamic Multibody Modeling for Tethered Space Elevators”, Acta Astronautica, 65 (2009), 399–422 | DOI

[6] Stephen S. Cohen, Arun K. Misra, “The Effect of Climber Transit on the Space Elevator Dynamics”, Acta Astronautica, 64 (2009), 538–553 | DOI

[7] D. D. Lang, “Space Elevator Dynamic Response to In-Transit Climbers”, 1st International Conference on Science, Engineering, and Habitation in Space, Space Engineering and Science Inst., Albuquerque, NM, 2006, 10152148

[8] C. R. McInnes, “Dynamics of a Particle Moving Along an Orbital Tower”, Journal of Guidance, Control and Dynamics, 28:2 (2005) | DOI

[9] P. Williams, Wubbo Ockels, “Climber Motion Optimization for the Tether Space Elevator”, AIAA/AAS Astrodynamics Specialist Conference and Exhibit (18–21 August, 2008), AIAA, 2008, 7383

[10] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354:6348 (1991), 56–58 | DOI

[11] M. Okada, Y. Inoue, A. Ishida, H. Mimura, “Light and Strong CNT Fiber Spun with CNT Web”, 61-st International Astronautical Congress, Prague, CZ, IAC-10-D4.4.3

[12] D. R. Merkin, Vvedenie v mekhaniku niti, Nauka, M., 1980 | MR | Zbl

[13] V. A. Svetlitskii, Mekhanika absolyutno gibkikh sterzhnei, Izd-vo MAI, M., 2001

[14] V. V. Beletskii, E. M. Levin, Dinamika kosmicheskikh trosovykh sistem, Nauka, M., 1990 | MR

[15] W. F. Ames, Numerical Methods for Partial Differential Equations, Academic Press Inc., 1977, 378 pp. | MR | Zbl