Modeling of large vortical structures in axisymmetrical jet flows
Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 111-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical study of the origin and development of the instability at the boundary of an axisymmetrical jet flow is carried out. The flow to be studied is represented by infinite uniform along the axis of symmetricity compressible flow with a specific distribution of the streamwise velocity in the radial direction. The method of the linear analysis is applied to investigate stability of disturbances in the form of normal harmonics, which shows the existence of unstable modes. Quantitative characteristics of these modes – the growth rate factor and the phase frequency – are obtained as functions of model parameters that design the regime of the basic jet flow. It is shown that the dominant unstable mode exists, which corresponds to the specific value of the longitudinal wave number. Direct numerical simulation of the nonlinear phase of the axisymmetrical mode development is performed, with the aid of which basic mechanisms of the transition from a simple straight motion in the jet into a complex vortical flow with the formation of large toroidal vortex are explained.
Keywords: gas stream, screech tone, aeroacoustics, the linear stability analysis, numerical modeling of three-dimensional non-stationary currents.
@article{MM_2011_23_11_a7,
     author = {I. S. Menshov and A. N. Nenashev},
     title = {Modeling of large vortical structures in axisymmetrical jet flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--130},
     publisher = {mathdoc},
     volume = {23},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_11_a7/}
}
TY  - JOUR
AU  - I. S. Menshov
AU  - A. N. Nenashev
TI  - Modeling of large vortical structures in axisymmetrical jet flows
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 111
EP  - 130
VL  - 23
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_11_a7/
LA  - ru
ID  - MM_2011_23_11_a7
ER  - 
%0 Journal Article
%A I. S. Menshov
%A A. N. Nenashev
%T Modeling of large vortical structures in axisymmetrical jet flows
%J Matematičeskoe modelirovanie
%D 2011
%P 111-130
%V 23
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_11_a7/
%G ru
%F MM_2011_23_11_a7
I. S. Menshov; A. N. Nenashev. Modeling of large vortical structures in axisymmetrical jet flows. Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 111-130. http://geodesic.mathdoc.fr/item/MM_2011_23_11_a7/

[1] Powell A., “The mechanism of choked jet noise”, Proc. Phys. Soc. London, Sect. B, 66 (1953), 1039 | DOI

[2] Menshov I. S., Semenov I. V., Akhmedyanov I. F., “Mekhanizm generatsii diskretnykh tonov v sverkhzvukovykh struinykh techeniyakh”, Doklady akademii nauk, 420:3 (2008), 1–5

[3] Michalke A., “Survey on jet instability theory”, Prog. Aerospace Sci., 21 (1984), 159–199 | DOI

[4] Hashimoto A., Menshov I., Nakamura Y., “Sound Emission from the Helical Mode of Supersonic Jet”, AIAA Paper 2656, 2004, 1–15

[5] Chan Y. Y., Leong R. K., “Discrete acoustic radiation generated by jet instability”, 6, 1973, 65–72

[6] Crighton D. G., Leppington F. G., “Radiation properties of the semi-infinite vortex sheet: the initial value problem”, J. Fluid Mech., 64 (1974), 393–414 | DOI | Zbl

[7] Morris P. J., “The spatial viscous instability of axisymmetric jets”, J. Fluid Mech., 77 (1976), 511–529 | DOI | Zbl

[8] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, perevod s angliiskogo pod redaktsiei V. A. Ditkina i L. N. Karamzinoi, Nauka, M., 1979, 180–183 | MR

[9] Metyuz D. G., Fink K. D., Chislennye metody. Ispolzovanie MATLAB, Vilyams, M., 2001, 720 pp.

[10] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[11] Van Leer B., “Towards the ultimate conservative difference scheme V. a second order sequel to Godunov's method”, J. Com. Phys., 32 (1979), 101–136 | DOI

[12] Van Albada G. D., Van Leer B., Roberts W. W., “A comparative study of computational methods in cosmic gas dynamics, Astron”, Astrophysics, 108 (1982), 76 | Zbl

[13] Men'shov I., Nakamura Y., “Hybrid explicit-implicit, unconditionally stable scheme for unsteady compressible flows”, AIAA Journal, 42:3 (2004), 551–559 | DOI

[14] Menshov I. S., “Povyshenie poryadka approksimatsii skhemy Godunova na osnove resheniya obobschennoi zadachi Rimana”, Zhurnal VM i MF, 1990, no. 9, 1357–1371 | MR

[15] Menshov I. S., “Obobschennaya zadacha Rimana”, Prikl. matem. i mekhanika, 1991, no. 1, 86–94 | MR

[16] Lamb G., Gidrodinamika, OGIZ Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva–Leningrad, 1947