Comparison of TVD and WENO schemes in the case of wave packet transport and vortex numerical diffusion problems
Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the given paper, dissipative properties of TVD and WENO schemes are tested and compared. A brief review of limiters used in TVD schemes is presented. An iterative procedure of limiting minmod reconstruction is described. A procedure of WENO-reconstruction inside the cell for uniform grids is presented. For the test cases, a problem of wave packet transport and a problem of numerical diffusion of vortices are used. A problem of wave packet transport is solved for uniform and non-uniform grids. On the basis of comparison of theoretical and numerical solutions, dissipative properties of different limiters for TVD scheme and WENO scheme are estimated.
Keywords: TVD, limiting reconstruction, WENO
Mots-clés : transport equation, vortex, Euler equations.
@article{MM_2011_23_11_a6,
     author = {S. V. Mikhailov and A. A. Savelyev},
     title = {Comparison of {TVD} and {WENO} schemes in the case of wave packet transport and vortex numerical diffusion problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {23},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_11_a6/}
}
TY  - JOUR
AU  - S. V. Mikhailov
AU  - A. A. Savelyev
TI  - Comparison of TVD and WENO schemes in the case of wave packet transport and vortex numerical diffusion problems
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 99
EP  - 110
VL  - 23
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_11_a6/
LA  - ru
ID  - MM_2011_23_11_a6
ER  - 
%0 Journal Article
%A S. V. Mikhailov
%A A. A. Savelyev
%T Comparison of TVD and WENO schemes in the case of wave packet transport and vortex numerical diffusion problems
%J Matematičeskoe modelirovanie
%D 2011
%P 99-110
%V 23
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_11_a6/
%G ru
%F MM_2011_23_11_a6
S. V. Mikhailov; A. A. Savelyev. Comparison of TVD and WENO schemes in the case of wave packet transport and vortex numerical diffusion problems. Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 99-110. http://geodesic.mathdoc.fr/item/MM_2011_23_11_a6/

[1] Prakticheskie aspekty resheniya zadach vneshnei aerodinamiki dvigatelei letatelnykh apparatov v ramkakh osrednennykh po vremeni uravnenii Nave–Stoksa, Trudy TsAGI, 2671, 2007

[2] Bosnyakov S. M., Vlasenko V. V., Mikhailov S. V., Morozov A. N., Savelev A. A., “Chislennoe modelirovanie shuma osesimmetrichnoi strui s ispolzovaniem LES i metoda voln neustoichivosti”, Tezisy dokladov vserossiiskoi otkrytoi konferentsii po aviatsionnoi akustike, Zvenigorod, 2009

[3] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[4] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77

[5] Rodionov A. V., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya marshevykh raschetov neravnovesnykh potokov”, ZhVM i MF, 27:4 (1987) | MR

[6] van Leer B., “A historical oversight: Vladimir P. Kolgan and his high-resolution scheme”, Journal of Computational Physics, 2010

[7] Sweby P. K., “High resolution schemes using flux limiters for hyberbolic conservation laws”, SIAM Journal of Numerical Analisys, 21:5 (1984) | MR | Zbl

[8] van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, Journal of Computational Physics, 32:1 (1979)

[9] Semenov A. Yu., “Algoritms for monotone nonoscillatory reconstruction of mesh function”, The 3rd Russia-Japan Joint Symposium on Computational Fluid Dynamics, 1992

[10] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[11] Harten A., Engquist B., Osher S., Chakravarthy S., “Uniformly high order essentially non-oscillatory schemes”, Journal of Computational Physics, 71 (1987), 231–303 | DOI | MR | Zbl

[12] Shu C.-W., Jiang G.-S., “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[13] Zhang R., Zhang M., Shu C.-W., “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes”, Commun. Comput. Phys., 9:3 (2011), 807–827 | MR

[14] Kudryavtsev A. N., Poplavskaya T. V., Khotyanovskii D. V., “Primenenie skhem vysokogo poryadka tochnosti pri modelirovanii nestatsionarnykh sverkhzvukovykh techenii”, Matematicheskoe modelirovanie, 19:7 (2007), 39–56 | MR

[15] Wang R., Feng H., Spiteri R. J., “Observations on the fifth-order WENO method with non-uniform meshes”, Applied Mathematics and Computation, 196:1 (2008), 174–193 | DOI | MR

[16] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[17] Bosnyakov I. S., Sudakov G. G., “Matematicheskie modeli blizhnego vikhrevogo sleda za samoletom”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov”, 2009

[18] Vlasenko V. V., Mikhailov S. V., “Programma ZEUS dlya rascheta nestatsionarnykh techenii v ramkakh podkhoov RANS i LES”, Materialy XX shkoly-seminara “Aerodinamika letatelnykh apparatov”, 2009

[19] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl