Transparent boundary conditions for the wave equation in the square domain
Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to constructing of Transparent Boundary Conditions (TBC) for the wave equation in the square domain. The idea of the method consists in reducing the problem in a domain with non-smooth boundary to the problem with infinitely smooth boundary. It uses an auxiliary region, partly overlapping with the original area – “domain of interest”. In the auxiliary field calculations are carried out in the space of Fourier coefficients, which significantly reduces the computational cost of the auxiliary problem. Sofronov’s Transparent Boundary Conditions are put on the outside, circular, boundary of the auxiliary domain. Results of test calculations to demonstrate the accuracy and stability of the proposed method are presented. It is shown that solutions of the initial-boundary problem with TBC tends to the corresponding solutions of the Cauchy problem as square of the grid step size as it tends to zero without increasing of the computational domain.
Keywords: exact nonreflecting boundary conditions, transparent boundary conditions (TBC), non-smooth boundary.
@article{MM_2011_23_11_a1,
     author = {N. Zaitsev and A. Vinnichenko},
     title = {Transparent boundary conditions for the wave equation in the square domain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {23},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_11_a1/}
}
TY  - JOUR
AU  - N. Zaitsev
AU  - A. Vinnichenko
TI  - Transparent boundary conditions for the wave equation in the square domain
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 5
EP  - 20
VL  - 23
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_11_a1/
LA  - ru
ID  - MM_2011_23_11_a1
ER  - 
%0 Journal Article
%A N. Zaitsev
%A A. Vinnichenko
%T Transparent boundary conditions for the wave equation in the square domain
%J Matematičeskoe modelirovanie
%D 2011
%P 5-20
%V 23
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_11_a1/
%G ru
%F MM_2011_23_11_a1
N. Zaitsev; A. Vinnichenko. Transparent boundary conditions for the wave equation in the square domain. Matematičeskoe modelirovanie, Tome 23 (2011) no. 11, pp. 5-20. http://geodesic.mathdoc.fr/item/MM_2011_23_11_a1/

[1] Ryabenkii V. S., “Tochnyi perenos raznostnykh kraevykh uslovii”, Funkts. analiz i ego prilozheniya, 24:3 (1990), 90–91 | MR

[2] Ryabenkii V. S., “Tochnyi perenos kraevykh uslovii”, Vychislit. mekhanika tverdogo tela, 1990, 129–145

[3] Ryaben'kii V. S., “Nonreflecting time dependent boundary conditions on artificial boundaries of varying location and chape”, Applied Numerical Mathematics, 33 (2000), 481–492 | DOI | MR

[4] Ryabenkii V. S., Turchaninov V. I., “Spektralnyi podkhod k postroeniyu neotrazhayuschikh iskusstvennykh granichnykh uslovii”, Matem. modelirovanie, 13:11 (2001), 23–47 | MR

[5] Ryabenkii V. S., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002, 492 pp.

[6] Sofronov I. L., Usloviya polnoi prozrachnosti dlya volnovogo uravneniya, Preprint IPM im. M. V. Keldysha RAN No 76, 1993; Sofronov I. L., “Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems”, Euro. J. Appl. Math., 9:6 (1998), 561–588 | DOI | MR | Zbl

[7] Sofronov I. L., Prozrachnye usloviya na perednem i zadnem secheniyakh aerodinamicheskoi truby dlya zadachi nestatsionarnogo dozvukovogo obtekaniya, Preprint IPM im. M. V. Keldysha RAN No 81, 1994 | Zbl

[8] Zaitsev N. A., Sofronov I. L., “Primenenie prozrachnykh granichnykh uslovii dlya resheniya dvumernykh zadach uprugosti s azimutalnoi anizotropiei”, Matem. modelirovanie, 19:8 (2007), 49–54 | MR | Zbl

[9] Sofronov I. L., “O primenenii prozrachnykh granichnykh uslovii v zadachakh aeroakustiki”, Matem. modelirovanie, 19:8 (2007), 105–112 | MR

[10] Sofronov I. L., Zaitsev N. A., “Transparent boundary conditions for the elastic waves in anisotropic media”, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 997–1004 | DOI | MR | Zbl

[11] Sofronov I. L., Zaitsev N. A., “Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer”, Journal of Computational and Applied Mathematics, 234 (2010), 1732–1738 | DOI | MR | Zbl