The bicompact monotonic schemes for a~multidimensional linear transport equation
Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bicompact difference schemes, previously proposed by the authors for the linear one-dimensional transport equations are generalized to the multidimensional case by using a coordinate-wise splitting of the multidimensional problem. The scheme stencil for each of the spatial directions is minimal and consists of two points. The schemes are efficient and can be solved by explicit formulas of the running calculation method. The proposed difference schemes have the fourth-order approximation in space variables and first or third-order approximation in time for smooth solutions. The schemes for solving multidimensional problems inherit the monotonicity property of one-dimensional bicompact schemes. Numerical examples that show the actual accuracy order of compact schemes for smooth solutions and the scheme monotonicity for jump-like solutions are given.
Mots-clés : multidimensional transport equation
Keywords: bicompact difference schemes, monotonicity.
@article{MM_2011_23_10_a7,
     author = {M. N. Mikhailovskaya and B. V. Rogov},
     title = {The bicompact monotonic schemes for a~multidimensional linear transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {23},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a7/}
}
TY  - JOUR
AU  - M. N. Mikhailovskaya
AU  - B. V. Rogov
TI  - The bicompact monotonic schemes for a~multidimensional linear transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 107
EP  - 116
VL  - 23
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a7/
LA  - ru
ID  - MM_2011_23_10_a7
ER  - 
%0 Journal Article
%A M. N. Mikhailovskaya
%A B. V. Rogov
%T The bicompact monotonic schemes for a~multidimensional linear transport equation
%J Matematičeskoe modelirovanie
%D 2011
%P 107-116
%V 23
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a7/
%G ru
%F MM_2011_23_10_a7
M. N. Mikhailovskaya; B. V. Rogov. The bicompact monotonic schemes for a~multidimensional linear transport equation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 107-116. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a7/

[1] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, Dokl. RAN, 430:4 (2010), 470–474 | MR | Zbl

[2] Grudnitskii V. T., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 224:6 (1977), 1249–1252

[3] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, ZhVM i MF, 46:9 (2006), 1638–1667 | MR

[4] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977, 440 pp. | MR

[5] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988, 264 pp. | MR

[6] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110

[7] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[8] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[9] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[10] Kalitkin N. N., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.