On one approach to the uncertainty investigation arising in model identification
Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 116-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Paper is devoted to the Identification Sets Method: a visual approach to the identification of the models parameters, based on the construction and visualization of the multidimensional graph of error function, as well as of sets of quasi-optimal parameters. The proposed approach may be effective in conditions of the decision uncertainty arising in the process of identification.
Keywords: mathematical model, parameters identification, uncertainty, multicriteria decision making, identification sets method, visualization, multidimensional error function, quasi-optimal parameters set, approximation.
@article{MM_2010_22_9_a8,
     author = {G. K. Kamenev},
     title = {On one approach to the uncertainty investigation arising in model identification},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--128},
     publisher = {mathdoc},
     volume = {22},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a8/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - On one approach to the uncertainty investigation arising in model identification
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 116
EP  - 128
VL  - 22
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a8/
LA  - ru
ID  - MM_2010_22_9_a8
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T On one approach to the uncertainty investigation arising in model identification
%J Matematičeskoe modelirovanie
%D 2010
%P 116-128
%V 22
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a8/
%G ru
%F MM_2010_22_9_a8
G. K. Kamenev. On one approach to the uncertainty investigation arising in model identification. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 116-128. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a8/

[1] Krasnoschekov P. S., Petrov A. A., Printsipy postroeniya modelei, FAZIS, VTs RAN, M., 2000, 411 pp. | MR

[2] Fisher F., Problema identifikatsii v ekonometrii, Statistika, M., 1978, 223 pp.

[3] Raibman N. S., Chto takoe identifikatsiya, Nauka, M., 1970

[4] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997, 239 pp.

[5] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Kluwer Academic Publishers, Boston, 2004, 310 pp. | MR | Zbl

[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Loucks D. P., Camara A. S., “Water resource conflict resolution based on interactive tradeoffs display”, Restoration of Degrad. Rivers: Challenges, Issues and Exper., Kluver Acad. Publ., 1998, 447–470

[7] Lotov A. V., Bushenkov V. A., Kamenev G. K., Metod dostizhimykh tselei. Matematicheskie osnovy i ekologicheskie prilozheniya, The Edwin Mellen Press, Lewiston, NY, USA, 1999, 400 pp.

[8] Lotov A., Bourmistrova L., Bushenkov V., “Efficient strategies: an application in water quality planning”, Decision Analysis and Support for Sustainable Development, eds. G. Kersten, Z. Mikolajuk, M. Rais, A. Yeh, Kluwer Academic Publishers, Dordrecht, 1999, 145–166

[9] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal Control of Cooling Process in Continuous Casting of Steel Using a Visualization-Based Multi-Criteria Approach”, Applied Mathematical Modelling, 29:7 (2005), 653–672 | DOI | Zbl

[10] Kamenev G. K., “Vizualnyi metod identifikatsii parametrov”, Doklady Akademii nauk, 359:3 (1998), 319–322 | MR | Zbl

[11] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matematicheskoe modelirovanie, 4:3 (1992), 105–118 | MR | Zbl

[12] Geresh P. A., Sushkov B. G., Furugyan M. G., Kamenev G. K., Geresh G. M., Sukhikh A. V., Miroshnik S. N., Kondratev O. L., Gonchar D. R., Otsenka parametrov gazovoi zalezhi s pomoschyu obobschennoi dinamicheskoi modeli, VTs RAN, M., 1994, 40 pp.

[13] Petrov A. A., Pospelov I. G., Shananin A. A., Opyt matematicheskogo modelirovaniya ekonomiki, Energoatomizdat, M., 1996, 54 pp. | MR | Zbl

[14] Pospelov I. G., Khokhlov M. A., “Identifikatsiya ekonomicheskikh sistem na osnove metoda mnozhestv dostizhimosti”, II Vserossiiskaya nauchn. konfer. “Matem. modelirovanie razvivayuscheisya ekonomiki EKOMOD-2007”, Sbornik trudov, VyatGU, Kirov, 2007, 205–215

[15] Kamenev G. K., “Vizualnaya tekhnologiya identifikatsii parametrov modelei tekhnicheskikh i biologicheskikh sistem”, III Vserossiiskaya nauchn. konfer. “Matem. modelirovanie razvivayuscheisya ekonomiki, ekologii i biotekhnologii EKOMOD-2008”, VyatGU, Kirov, 2008, 30

[16] Mosteller F., Tyuki Dzh., Analiz dannykh i regressiya, Finansy i statistika, M., 1982

[17] Bard I., Nelineinoe otsenivanie parametrov, Statistika, M., 1979 | MR | Zbl

[18] Bushenkov V. A., Chernykh O. L., Kamenev G. K. Lotov A. V., “Multidimensional Images Given by Mappings: Construction and Visualization”, Pattern Recognition and Image Analysis, 5:1 (1995), 35–56

[19] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR | Zbl

[20] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, Izd. VTs RAN, M., 2007, 230 pp. | MR

[21] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 5–37 | MR | Zbl

[22] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom Glubokikh Yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl

[23] Beauchamp J. J., Cornell R. G., “Simultaneous nonlinear estimation”, Technometrics, 8 (1966), 40–51 | MR