On nonlinear singularly perturbed problems in biology
Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two nonlinear singularly perturbed model problems on heartbeat and nerve impulse are discussed with sufficient theoretical material. Data analysis of non-autonomous models is made, and is built models' phase portrait. We also give oscillation graphs of heartbeat mathematical model (cardiogram analog) and graphs of nerve impulse transmission with considering condition of Hopf bifurcation appearance. The frontier layer presence is marked at each graph in a $t=0$ neighborhood.
Keywords: models of the heartbeat and nerve impulse, singularly perturbed problems, stability.
@article{MM_2010_22_9_a7,
     author = {Yu. A. Konyaev and V. I. Bezyaev and O. N. Filippova},
     title = {On nonlinear singularly perturbed problems in biology},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {22},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a7/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
AU  - V. I. Bezyaev
AU  - O. N. Filippova
TI  - On nonlinear singularly perturbed problems in biology
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 107
EP  - 115
VL  - 22
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a7/
LA  - ru
ID  - MM_2010_22_9_a7
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%A V. I. Bezyaev
%A O. N. Filippova
%T On nonlinear singularly perturbed problems in biology
%J Matematičeskoe modelirovanie
%D 2010
%P 107-115
%V 22
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a7/
%G ru
%F MM_2010_22_9_a7
Yu. A. Konyaev; V. I. Bezyaev; O. N. Filippova. On nonlinear singularly perturbed problems in biology. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 107-115. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a7/

[1] Arrowsmith D. K., Place C. M., Dynamical systems. Differential equations, maps and chaotic behavior, Chapman and Hall, London, 1992, 330 pp. | MR | Zbl

[2] Kato T., Teoriya vozmuscheniya lineinykh operatorov, Mir, M., 1972, 740 pp. | Zbl

[3] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[4] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981, 400 pp. | MR

[5] Konyaev Yu. A., “Analiz singulyarno vozmuschennykh zadach metodom rasschepleniya”, Matematicheskoe modelirovanie, 13:12 (2001), 55–57 | MR | Zbl

[6] Konyaev Yu. A., “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuscheniya”, Matematicheskii sbornik, 184:12 (1993), 133–144 | MR | Zbl

[7] Konyaev Yu. A., “Metod unitarnykh preobrazovanii v teorii ustoichivosti”, Izv. VUZ. Matematika, 2002, no. 2, 41–45 | MR | Zbl

[8] Zeeman E. C., “Differential Equations for the Heartbeat and Nerve Impulse”, Dynamical systems, Academic Press, 1973, 683–741 | MR

[9] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | MR | Zbl

[10] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998, 480 pp. | MR