Comparison of some methods for solution of the problem related to the weakly stratified liquid internal wave motions
Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are proposed and analyzed three different solution schemes of the problem of transient oscillations of internal wave motions in stratified liquid on the base of the finite differences method and of the finite elements method. The schemes' testing has been performed by means of computational experiment. Their comparative analysis is carried out.
Keywords: internal wave, finite difference method, a little stratified liquid.
@article{MM_2010_22_9_a0,
     author = {M. N. Moskalkov and D. Utebaiev},
     title = {Comparison of some methods for solution of the problem related to the weakly stratified liquid internal wave motions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {22},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a0/}
}
TY  - JOUR
AU  - M. N. Moskalkov
AU  - D. Utebaiev
TI  - Comparison of some methods for solution of the problem related to the weakly stratified liquid internal wave motions
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 12
VL  - 22
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a0/
LA  - ru
ID  - MM_2010_22_9_a0
ER  - 
%0 Journal Article
%A M. N. Moskalkov
%A D. Utebaiev
%T Comparison of some methods for solution of the problem related to the weakly stratified liquid internal wave motions
%J Matematičeskoe modelirovanie
%D 2010
%P 3-12
%V 22
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a0/
%G ru
%F MM_2010_22_9_a0
M. N. Moskalkov; D. Utebaiev. Comparison of some methods for solution of the problem related to the weakly stratified liquid internal wave motions. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a0/

[1] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990, 344 pp. | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[3] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981, 416 pp. | MR | Zbl

[4] Moskalkov M. N., Utebaev D., “Investigation of difference schemes of finite element method for second-order unsteady-state equations”, J. Comput. Appl. Math., 92 (2005), 70–76

[5] Moskalkov M. N., “Skhema metoda konechnykh elementov povyshennoi tochnosti dlya resheniya nestatsionarnykh uravnenii vtorogo poryadka”, Dif. uravneniya, 16:7 (1980), 1283–1292 | MR

[6] Utebaev D., “Chislennoe reshenie lineinykh nestatsionarnykh zadach teorii vnutrennikh voln”, DAN RUz. Ser. Matematika, tekhnicheskie nauki, estestvoznanie, 2008, no. 3, 49–53