The stationary regime of gas combustion in hollow two-layer porous cylinder
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 129-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A stationary model of gas combustion in two-layer porous cylindric burner with allowance for (typical for stationary regime of burning operation) conditions at the entrance to the porous body and conditions of heat exchange with the gas phase surrounding the burner and with the heat exchanger is proposed and numerically analyzed. The iteration algorithm of numerical investigation is designed. Analysis of analytical solution for extreme cases and detailed numerical investigation of model allow to determine a process-dependent parameters are satisfiable from practice viewpoint.
Keywords: heat exchange, gas
Mots-clés : filtration.
@article{MM_2010_22_7_a8,
     author = {A. G. Knyazeva and Yu. A. Chumakov},
     title = {The stationary regime of gas combustion in hollow two-layer porous cylinder},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a8/}
}
TY  - JOUR
AU  - A. G. Knyazeva
AU  - Yu. A. Chumakov
TI  - The stationary regime of gas combustion in hollow two-layer porous cylinder
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 129
EP  - 147
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a8/
LA  - ru
ID  - MM_2010_22_7_a8
ER  - 
%0 Journal Article
%A A. G. Knyazeva
%A Yu. A. Chumakov
%T The stationary regime of gas combustion in hollow two-layer porous cylinder
%J Matematičeskoe modelirovanie
%D 2010
%P 129-147
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a8/
%G ru
%F MM_2010_22_7_a8
A. G. Knyazeva; Yu. A. Chumakov. The stationary regime of gas combustion in hollow two-layer porous cylinder. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 129-147. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a8/

[1] Ekkert E. R., Dreik R. M., Teoriya teplo- i massoobmena, Gosenergoizdat, M.–L., 1961, 680 pp.

[2] Avduevskii V. S. (red.), Osnovy teploperedachi v aviatsionnoi i raketnokosmicheskoi tekhnike, Mashinostroenie, M., 1992, 528 pp.

[3] Polezhaev Yu. V., Yurevich Yu. B., Teplovaya zaschita, Energiya, M., 1976, 392 pp.

[4] Levin V. A., Lutsenko N. A., “Chislennoe modelirovanie dvumernykh nestatsionarnykh techenii gaza cherez poristye teplovydelyayuschie elementy”, Vychislitelnye tekhnologii, 11:6 (2006), 44–58

[5] Polyaev V. M., Maiorov V. A., Vasilev L. L., Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatelnykh apparatov, Mashinostroenie, M., 1988, 168 pp.

[6] Zhdanok S. A., Dobrego K. V., Futko S. I., “Flame localization inside axis-symmetric cylindrical and spherical porous media burners”, International Journal of Heat and Mass Transfer, 41:22 (1998), 3647–3655 | DOI | Zbl

[7] Korzhavin A. A., Bunev V. A., Babkin V. S., “Dynamics of gaseous combustion in closed systems with an inert porous medium”, Combustion and Flame, 109:4 (1997), 507–520 | DOI

[8] Drobyshevich V. I., “Chislennoe issledovanie protsessov goreniya v tsilindricheskoi poristoi gorelke”, Fizika goreniya i vzryva, 44:3 (2008), 17–21

[9] Laevskii Yu. M., Babkin V. S., “Stabilizirovannaya volna goreniya gazov v inertnoi poristoi srede”, Fizika goreniya i vzryva, 44:5 (2008), 8–15

[10] Chumakov Yu. A., Knyazeva A. G., “Rezhimy szhiganiya gaza v poristom tele teplogeneratora tsilindricheskoi formy”, Fizika goreniya i vzryva, 45:1 (2009), 18–29

[11] Basniev K. S., Dmitriev N. M., Kanevskaya R. D., Maksimov V. M., Podzemnaya gidromekhanika, IKI, M.–Izhevsk, 2006, 488 pp.

[12] Barenblatt G. I., Entov V. M., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.

[13] Yu. Sh. Matros (red.), Rasprostranenie teplovykh voln v geterogennykh sredakh, Nauka, Novosibirsk, 1988, 108–145

[14] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975, 576 pp.

[15] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vyssh. shk., M., 2005, 430 pp.

[16] Boli B., Ueiner Dzh., Teoriya temperaturnykh napryazhenii, Mir, M., 1964, 520 pp.

[17] Kulkov S. N., Buyakov S. P., Maslovskii V. I., “Struktura, fazovyi sostav i mekhanicheskie svoistva keramik na osnove dioksida tsirkoniya”, Vestnik Tomskogo gosudarstvennogo universiteta, 2003, no. 13, 34–57

[18] Babichev A. P., Babushkina N. A., Bratkovskii A. M. i dr., Fizicheskie velichiny, Spravochnik, eds. I. S. Grigorev, E. Z. Meilikhov, Energoatomizdat, M., 1991, 1232 pp.

[19] Isserlin A. S., Osnovy szhiganiya gazovogo topliva, Spravochnoe posobie, Nedra, L., 1987, 336 pp.

[20] Ksandopulo G. I., Khimiya plameni, Khimiya, M., 1980, 256 pp.

[21] Isachenko V. P., Osipova V. A., Sukomel A. S., Teploperedacha, Uchebnik dlya vuzov, izd. 3-e, pererab. i dop., Energiya, M., 1975, 488 pp.

[22] Chumakov Yu. A., Knyazeva A. G., “Kriticheskie yavleniya pri szhiganii gaza v poristom tele radiatsionnoi gorelki”, Trudy V Mezhdunarodnoi konferentsii studentov i molodykh uchenykh “Perspektivy razvitiya fundamentalnykh nauk” (20–23 maya 2008, Tomsk), 301–304