Method adaptive artificial viscosity
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of adaptive artificial viscosity (АИВ=AAV) is used for 1-D viscous Burgers equation, linear and nonlinear transport equation and boundary layer. Generalization of method AAV [1,2] to the problems containing second derivatives leads to implicit difference schemes.
Keywords: Burgers eguations, implicit difference schemes, adaptive artificial viscosity.
@article{MM_2010_22_7_a7,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Method adaptive artificial viscosity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Method adaptive artificial viscosity
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 121
EP  - 128
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/
LA  - ru
ID  - MM_2010_22_7_a7
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Method adaptive artificial viscosity
%J Matematičeskoe modelirovanie
%D 2010
%P 121-128
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/
%G ru
%F MM_2010_22_7_a7
I. V. Popov; I. V. Fryazinov. Method adaptive artificial viscosity. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 121-128. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/

[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007 g., g. Kazan, Rossiya), Izd-vo Kazanskogo Gos. Universiteta, Kazan, 2007, 223–230

[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl

[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl

[4] Ivanov A. A., Tishkin V. F., Favorskii A. P., Yatsuk A. N., Postroenie kvazimonotonnoi skhemy povyshennogo poryadka approksimatsii dlya uravneniya perenosa, preprint No 69, IPM im. M. V. Keldysha RAN, M., 1993

[5] Samarskii A. A., “O monotonnykh raznostnykh skhemakh dlya ellipticheskikh i parabolicheskikh uravnenii v sluchae nesamosopryazhennogo ellipticheskogo uravneniya”, Zh. vych. mat. i matem. fiz., 2:3 (1965), 548–551

[6] Golant E. I., “O sopryazhennykh semeistvakh raznostnykh skhem dlya uravnenii parabolicheskogo tipa s mladshimi chlenami”, Zh. vych. mat. i matem. fiz., 18:5 (1969), 1162–1169 | MR