Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_7_a7, author = {I. V. Popov and I. V. Fryazinov}, title = {Method adaptive artificial viscosity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {121--128}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/} }
I. V. Popov; I. V. Fryazinov. Method adaptive artificial viscosity. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 121-128. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a7/
[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007 g., g. Kazan, Rossiya), Izd-vo Kazanskogo Gos. Universiteta, Kazan, 2007, 223–230
[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl
[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl
[4] Ivanov A. A., Tishkin V. F., Favorskii A. P., Yatsuk A. N., Postroenie kvazimonotonnoi skhemy povyshennogo poryadka approksimatsii dlya uravneniya perenosa, preprint No 69, IPM im. M. V. Keldysha RAN, M., 1993
[5] Samarskii A. A., “O monotonnykh raznostnykh skhemakh dlya ellipticheskikh i parabolicheskikh uravnenii v sluchae nesamosopryazhennogo ellipticheskogo uravneniya”, Zh. vych. mat. i matem. fiz., 2:3 (1965), 548–551
[6] Golant E. I., “O sopryazhennykh semeistvakh raznostnykh skhem dlya uravnenii parabolicheskogo tipa s mladshimi chlenami”, Zh. vych. mat. i matem. fiz., 18:5 (1969), 1162–1169 | MR