Мodeling of the surface-reaction diffusion and numerical solution
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work process of surface-reaction diffusion is considered and mathematical model is suggested. It is a system of the partial derivative equations complicated unknown moving boundary. The given model is studied analytically and numerically. On the basis of the experimental facts the estimation of characteristic times is obtained. This makes it possible to simplify an initial problem and to build the approximate analytical solution. Using the method of final differences and the method of straightening of front, a algorithm of the numerical solution of the initial problem is constructed. Comparison of the numerical and analytical solution shows although there is a divergence in the process description at the initial stage, but both solutions equally transfer feature of the model with the course of time.
Mots-clés : surface diffusion
Keywords: system of parabolic equations, moving boundary, asymptotic solution, finite difference method.
@article{MM_2010_22_7_a5,
     author = {V. S. Zverev},
     title = {{\CYRM}odeling of the surface-reaction diffusion and numerical solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a5/}
}
TY  - JOUR
AU  - V. S. Zverev
TI  - Мodeling of the surface-reaction diffusion and numerical solution
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 82
EP  - 92
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a5/
LA  - ru
ID  - MM_2010_22_7_a5
ER  - 
%0 Journal Article
%A V. S. Zverev
%T Мodeling of the surface-reaction diffusion and numerical solution
%J Matematičeskoe modelirovanie
%D 2010
%P 82-92
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a5/
%G ru
%F MM_2010_22_7_a5
V. S. Zverev. Мodeling of the surface-reaction diffusion and numerical solution. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 82-92. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a5/

[1] Neiman A. Ya., “Poverkhnostnaya reaktsionnaya diffuziya pri tverdofaznykh reaktsiyakh s uchastiem $\mathrm{MoO}_3$ i $\mathrm{WO}_3$”, Iony v tverdofaznom sostoyanii, 83 (1996), 263–273

[2] Neiman A. Ya., Utyumov V. Yu., Karpov S. G., Kostikov Yu. P., Shiyatova M. V., “Tverdofaznoe rastekanie i kristallizatsiya vysokotemperaturnykh oksidov. Sistemy $\mathrm M_2\mathrm O_3/\mathrm{Al}_2\mathrm O_3$, $\mathrm M_2\mathrm O_3/\mathrm{ZrO}_2$ ($\mathrm Y_2\mathrm O_3$); ($\mathrm M=\mathrm{In,Ga,Cr}$)”, Poverkhnost, 2000, no. 3, 52–61

[3] Neiman A. Ya., “Elektropoverkhnostnye yavleniya v tverdofaznykh sistemakh”, Zhurnal fizicheskoi khimii, 75:12 (2001), 2119–2134

[4] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Ucheb. Posobie, 3-e izd., pererab. i dop., Vyssh. shk., M., 2001, 550 pp.

[5] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[6] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[7] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Glavnaya redaktsiya fiziko-matematicheskoi literatury izdatelstva “Nauka”, M., 1977, 736 pp.

[8] Bokshtein B. S., Kopetskii Ch. V., Shvindlerman L. S., Termodinamika i kinetika granits zeren v metallakh, Metallurgiya, M., 1986, 224 pp.

[9] Zverev V. S., “Matematicheskoe modelirovanie poverkhnostnoi diffuzii s frontalnoi khimicheskoi reaktsiei pri raznykh geometriyakh raspolozheniya reagentov”, Vestnik Bashkirskogo universiteta, 13:3(I) (2008), 830–835