Calculation of roots and there multiplicity for nonlinear equation
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 33-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different methods for calculation of nonlinear equation roots were compared. There of seconds method occuerd the most effective for simple roots. The methods of bisections and golden section were effective for multiple roots, but the last iterations should be performed by the method of seconds with the Aitken extrapolation for accuracy improving. All this methods termit to establish a root multiplicity.
@article{MM_2010_22_7_a2,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {Calculation of roots and there multiplicity for nonlinear equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--52},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a2/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - Calculation of roots and there multiplicity for nonlinear equation
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 33
EP  - 52
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a2/
LA  - ru
ID  - MM_2010_22_7_a2
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T Calculation of roots and there multiplicity for nonlinear equation
%J Matematičeskoe modelirovanie
%D 2010
%P 33-52
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a2/
%G ru
%F MM_2010_22_7_a2
N. N. Kalitkin; L. V. Kuzmina. Calculation of roots and there multiplicity for nonlinear equation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 33-52. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a2/

[1] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968, 720 pp. | MR

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. N., Chislennye metody, 3-e izdanie, Binom, Laboratoriya znanii, M., 2004, 636 pp.

[3] Voevodin V. V., Chislennye metody algebry: teoriya i algorifmy, Nauka, M., 1966 | MR | Zbl

[4] Uilkinson Dzh. Ch., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[5] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[6] Kalitkin N. N., Poshivailo I. P., “Opredelenie kratnosti kornya nelineinogo algebraicheskogo uravneniya”, ZhVM i MF, 48:7 (2008), 1181–1186

[7] Kalitkin N. N., Poshivailo I. P., “O vychislenii prostykh i kratnykh kornei nelineinogo uravneniya”, Matematicheskoe modelirovanie, 20:7 (2008), 57–64 | MR | Zbl

[8] Zhidkov E. P., Puzynin I. V., “Ob odnom metode vvedeniya parametra pri reshenii kraevykh zadach dlya nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, ZhVM i FM, 7:5 (1967), 1086–1095 | Zbl

[9] Gavurin M. K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. Vuzov. Matematika, 1958, no. 5(6), 18–31 | MR | Zbl

[10] Alefeld G., “On the convergence of Halley's method”, Amer. Math. Monthly, 88 (1981), 530–538 | DOI | MR