Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_7_a0, author = {A. M. Blokhin and B. V. Semisalov}, title = {The construction of a~class of numerical algorithms in the ballistic diode problem}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--21}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a0/} }
TY - JOUR AU - A. M. Blokhin AU - B. V. Semisalov TI - The construction of a~class of numerical algorithms in the ballistic diode problem JO - Matematičeskoe modelirovanie PY - 2010 SP - 3 EP - 21 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a0/ LA - ru ID - MM_2010_22_7_a0 ER -
A. M. Blokhin; B. V. Semisalov. The construction of a~class of numerical algorithms in the ballistic diode problem. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a0/
[1] Blokhin A. M., Boyarsky S. A., Semisalov B. V., “On an approach to the construction of difference schemes for the moment equations of charge transport in semiconductors”, Le Matematiche, 64:1 (2009), 77–91 | MR | Zbl
[2] Blokhin A. M., Boyarskii S. A., Semisalov B. V., “Odin sposob postroeniya raznostnykh modelei dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryadov v poluprovodnikakh”, Vestnik NGU. Ceriya Matematika, mekhanika, informatika, 9:4 (2009), 3–15
[3] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl
[4] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl
[5] Blokhin A. M., Bushmanov R. S., Romano V., “Asymptotic stability of the equilibrium stste for the hydrodynamical model of charge transporrt in semiconductors based on the maximum enropy prin-ciple”, Int. J. Engineering Science, 42:8–9 (2004), 915–934 | DOI | MR
[6] Blokhin A. M., Bushmanov R. S., Romano V., “Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors”, Nonlinear Analisis, 65 (2006), 2169–2191 | DOI | MR | Zbl
[7] Blokhin A. M., Bushmanov R. S., Romano V., “Global existance for the system of the macroscopic balance equations of charge transport in semiconductors”, J. Math. Anal. Appl., 305 (2005), 71–90 | DOI | MR
[8] Blokhin A. M., Ibragimova A. S., “1D Numerical Simulation of the MEP Mathematical Model in ballistic diode problem”, Journal of Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl
[9] Blokhin A. M., Alaev R. D., Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, NGU, Novosibirsk, 1993 | MR
[10] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matematicheskoe modelirovanie, 21:4 (2009), 15–34 | MR | Zbl
[11] Blokhin A. M., Iordanidi A. A., Merazhov I. Z., Chislennoe issledovanie odnoi gidrodinamicheskoi modeli perenosa zaryada v poluprovodnikakh, preprint No 33, In-t matematiki SO RAN, Novosibirsk, 1996, 51 pp.
[12] Pinchukov V. I., “Adaptive operators of smoothness of arbitrary order”, Comput. Tech. Proc. ICT SD RAS, 2:6 (1993), 232–245 | MR
[13] Pinchukov V. I., “Algorithms monotonization of schemes of advanced exactness for equations of type $\partial f/\partial t+\mu\partial^kf/\partial x^k=0$, $k\geq0$”, Model. Mekh., 7:3 (1993), 150–159 | MR