Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device
Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 111-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

In work the generalized mathematical model for a class of nonlinear problems about flutter of viscoelastic isotropic plates, panels and the shells which are flowed round by a supersonic flow of gas is constructed. Computing algorithms are developed and the complex of applied programs for the decision of a wide class of problems about nonlinear flutter of viscoelastic elements and units of the flying device is created.
Keywords: integro-differential equations, flutter, viscoelastic.
@article{MM_2010_22_6_a9,
     author = {B. A. Khudayarov},
     title = {Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--131},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a9/}
}
TY  - JOUR
AU  - B. A. Khudayarov
TI  - Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 111
EP  - 131
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a9/
LA  - ru
ID  - MM_2010_22_6_a9
ER  - 
%0 Journal Article
%A B. A. Khudayarov
%T Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device
%J Matematičeskoe modelirovanie
%D 2010
%P 111-131
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a9/
%G ru
%F MM_2010_22_6_a9
B. A. Khudayarov. Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 111-131. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a9/

[1] Matyash V. I., “Flatter uprugovyazkoi plastinki”, Mekhanika polimerov, 1971, no. 6, 1077–1083

[2] Larionov G. S., “Nelineinyi flatter uprugovyazkoi plastinki”, Mekhanika tverdogo tela, 1974, no. 4, 95–100

[3] Blend D., Teoriya lineinoi vyazkouprugosti, Mir, M., 1965, 200 pp.

[4] Eshmatov Kh., Integralnyi metod matematicheskogo modelirovaniya zadach dinamiki vyazkouprugikh sistem, Dis. na sois. uchen. step. dok. tekhn. nauk: 18.05.13, In-t problem modelirovaniya v energetike AN Ukrainy, Kiev, 1991, 337 pp.

[5] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972, 432 pp. | MR

[6] Volmir A. S., Ustoichivost uprugikh sistem, Fizmatgiz, M., 1963, 880 pp. | MR

[7] Ilyushin A. A., “Zakon ploskikh sechenii v aerodinamike bolshikh sverkhzvukovykh skorostei”, Prikladnaya matematika i mekhanika, 20:6 (1956), 733–755

[8] Verlan A. F., Sizikov V. S., Integralnye uravneniya: Metody, algoritmy, programmy, Naukova dumka, Kiev, 1986, 543 pp.

[9] Verlan A. F., Sizikov V. S., Metody resheniya integralnykh uravnenii s programmami dlya EVM, Naukova dumka, Kiev, 1978, 291 pp. | MR | Zbl

[10] Verlan A. F., Moskalyuk S. S., Matematicheskoe modelirovanie nepreryvnykh dinamicheskikh sistem, Naukova dumka, Kiev, 1988, 288 pp. | MR | Zbl

[11] Verlan A. F., Eshmatov Kh., Khudayarov B., Bobonazarov Sh. P., “Chislennoe reshenie nelineinykh zadach dinamiki vyazkouprugikh sistem”, Elektronnoe modelirovanie, 26:3 (2004), 3–14 | MR

[12] Pukhov G. E., Differentsialnye preobrazovaniya i matematicheskoe modelirovanie fizicheskikh protsessov, Naukova dumka, Kiev, 1986, 159 pp.

[13] Pukhov G. E., Priblizhennye metody matematicheskogo modelirovaniya, osnovannye na primenenie differentsialnykh T-preobrazovanii, Naukova dumka, Kiev, 1988, 216 pp.

[14] Kabulov V. K., Algoritmizatsiya v mekhanike sploshnykh sred, Fan, Tashkent, 1979, 304 pp.

[15] Kabulov V. K., Algoritmizatsiya v teorii uprugosti i deformatsionnoi prochnosti, Fan, Tashkent, 1966, 391 pp.

[16] Kabulov V. K., “Problemy algoritmizatsii v teorii vyazkouprugosti”, Vopr. vychisl. i prikl. matematiki, 102, Tashkent, 1996, 4–18

[17] Badalov F. B., Metody resheniya integralnykh i integro-differentsialnykh uravnenii nasledstvennoi teorii vyazkouprugosti, Mekhnat, Tashkent, 1987, 269 pp. | MR | Zbl

[18] Badalov F. B., Eshmatov X., Yusupov M., “O nekotorykh metodakh resheniya sistem integrodifferentsialnykh uravnenii, vstrechayuschikhsya v zadachakh vyazkouprugosti”, Prikladnaya matematika i mekhanika, 51:5 (1987), 867–871 | MR | Zbl

[19] Khudayarov B. A., “Numerical Analysis of the Nonlinear Flutter of Viscoelastic Plates”, International journal applied mechanics, 41:5 (2005), 538–542 | DOI | Zbl

[20] Badalov F. B., Khudayarov B. A., Abdukarimov A., “Issledovanie vliyaniya yadra nasledstvennosti na reshenie lineinykh i nelineinykh dinamicheskikh zadach nasledstvenno-deformiruemykh sistem”, Problemy mashinostroeniya i nadezhnosti mashin, 2007, no. 4, 107–110

[21] Khudayarov B. A., Bandurin N. G., “Nelineinyi flatter vyazkouprugikh ortotropnykh tsilindricheskikh panelei”, Matematicheskoe modelirovanie, 17:10 (2005), 79–86 | Zbl

[22] Khudayarov B. A., “Chislennoe reshenie nelineinykh zadach o flattere vyazkouprugikh obolochek”, Sibirskii zhurnal vychislitelnyi matematiki, 7:3 (2004), 277–282 | Zbl