Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_6_a8, author = {O. I. Dodulad and Yu. Yu. Kloss and F. G. Tcheremissine and P. V. Shuvalov}, title = {Simulation of shock wave propagation in a~microchannel by solving the {Boltzmann} equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {99--110}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/} }
TY - JOUR AU - O. I. Dodulad AU - Yu. Yu. Kloss AU - F. G. Tcheremissine AU - P. V. Shuvalov TI - Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation JO - Matematičeskoe modelirovanie PY - 2010 SP - 99 EP - 110 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/ LA - ru ID - MM_2010_22_6_a8 ER -
%0 Journal Article %A O. I. Dodulad %A Yu. Yu. Kloss %A F. G. Tcheremissine %A P. V. Shuvalov %T Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation %J Matematičeskoe modelirovanie %D 2010 %P 99-110 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/ %G ru %F MM_2010_22_6_a8
O. I. Dodulad; Yu. Yu. Kloss; F. G. Tcheremissine; P. V. Shuvalov. Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 99-110. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/
[1] G. Mirshecari, M. Brouillette, “Experimental study of the shock propagation in micro-scale cannel”, Book of proceedings of 27-th International Symposium on Shock Waves, St. Petersburg, Russia, 2009, 260
[2] Nobuya Miyoshi et al., “Development of Ultra Small Shock Tube for High Energy Molecular Beam Source”, 26-th Int. Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 1084, 2009, 557–562
[3] D. Ngomo, A. Chinnayya, A. Hadjaji, “Numerical investigation of viscosity and heat-losses effects on shock propagation and detonation in narrow channels”, Book of proceedings of 27-th International Symposium on Shock Waves, St. Petersburg, Russia, 2009, 350
[4] M. Brouillette, “Shock waves at microscales”, Shock Waves, 13 (2003), 3–12 | DOI
[5] W. Garen et al., “Shock waves in mini-tubes: Influences on the scaling parameter S”, Proc.of 26-th Intern. Symp.on Shock Waves, Goettingen, Germany, 2007, No 2062
[6] G. Mirshecari, M. Brouillette, “One-dimensional model for microscale shock tube”, Shock Waves, 19 (2009), 25–38 | DOI
[7] I. N. Larina, V. A. Rykov, E. M. Shakhov, “Nestatsionarnye techeniya razrezhennogo gaza mezhdu parallelnymi plastinami”, Izvestiya Akademii nauk. Mekhanika zhidkosti i gaza, 1997, no. 2, 165–173 | Zbl
[8] D. E. Zeitoun et al., “Continuum and Kinetic Simulation of Shock Wave Propagation in Long Microchannel”, 26-th Int. Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 1084, 2009, 464–469
[9] F. G. Cheremisin, “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Doklady RAN, 357:1 (1997), 53–56 | MR | Zbl
[10] F. G. Cheremisin, “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, ZhVM i MF, 46:2 (2006), 329–343 | MR | Zbl
[11] F. G. Tcheremissine, “Solution of the Boltzmann Kinetic Equation for Low Speed Flows”, Transport Theory and Statistical Physics, 37:5 (2008), 564–575 | DOI | MR | Zbl
[12] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[13] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, inc., N.-Y.; Chapman and Hall, London, 1954 | Zbl