Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation
Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Shock wave propagation inside a microchannel is studied by solving the Boltzmann kinetic equation. The shock wave enters into the channel from the outside partially reflecting from the flat membrane that contains periodic system of shells. Attenuation of the shock wave is traced up to the transition of the flow to the subsonic regime. The kinetic equation is solved by a finite-difference method. The collision integral is evaluated on the fixed velocity grid by the conservative projection method. Two molecular models are considered: that of hard spheres and with Lennard-Johnes potential of Argon at temperature of 300 K. Parallel computations are realized at a cluster by using MPI technology. Graphics of the shock wave attenuation and detailed fields of flow parameters are reported.
Keywords: the Boltzmann equation
Mots-clés : microchannel.
@article{MM_2010_22_6_a8,
     author = {O. I. Dodulad and Yu. Yu. Kloss and F. G. Tcheremissine and P. V. Shuvalov},
     title = {Simulation of shock wave propagation in a~microchannel by solving the {Boltzmann} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/}
}
TY  - JOUR
AU  - O. I. Dodulad
AU  - Yu. Yu. Kloss
AU  - F. G. Tcheremissine
AU  - P. V. Shuvalov
TI  - Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 99
EP  - 110
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/
LA  - ru
ID  - MM_2010_22_6_a8
ER  - 
%0 Journal Article
%A O. I. Dodulad
%A Yu. Yu. Kloss
%A F. G. Tcheremissine
%A P. V. Shuvalov
%T Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation
%J Matematičeskoe modelirovanie
%D 2010
%P 99-110
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/
%G ru
%F MM_2010_22_6_a8
O. I. Dodulad; Yu. Yu. Kloss; F. G. Tcheremissine; P. V. Shuvalov. Simulation of shock wave propagation in a~microchannel by solving the Boltzmann equation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 99-110. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a8/

[1] G. Mirshecari, M. Brouillette, “Experimental study of the shock propagation in micro-scale cannel”, Book of proceedings of 27-th International Symposium on Shock Waves, St. Petersburg, Russia, 2009, 260

[2] Nobuya Miyoshi et al., “Development of Ultra Small Shock Tube for High Energy Molecular Beam Source”, 26-th Int. Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 1084, 2009, 557–562

[3] D. Ngomo, A. Chinnayya, A. Hadjaji, “Numerical investigation of viscosity and heat-losses effects on shock propagation and detonation in narrow channels”, Book of proceedings of 27-th International Symposium on Shock Waves, St. Petersburg, Russia, 2009, 350

[4] M. Brouillette, “Shock waves at microscales”, Shock Waves, 13 (2003), 3–12 | DOI

[5] W. Garen et al., “Shock waves in mini-tubes: Influences on the scaling parameter S”, Proc.of 26-th Intern. Symp.on Shock Waves, Goettingen, Germany, 2007, No 2062

[6] G. Mirshecari, M. Brouillette, “One-dimensional model for microscale shock tube”, Shock Waves, 19 (2009), 25–38 | DOI

[7] I. N. Larina, V. A. Rykov, E. M. Shakhov, “Nestatsionarnye techeniya razrezhennogo gaza mezhdu parallelnymi plastinami”, Izvestiya Akademii nauk. Mekhanika zhidkosti i gaza, 1997, no. 2, 165–173 | Zbl

[8] D. E. Zeitoun et al., “Continuum and Kinetic Simulation of Shock Wave Propagation in Long Microchannel”, 26-th Int. Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 1084, 2009, 464–469

[9] F. G. Cheremisin, “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Doklady RAN, 357:1 (1997), 53–56 | MR | Zbl

[10] F. G. Cheremisin, “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, ZhVM i MF, 46:2 (2006), 329–343 | MR | Zbl

[11] F. G. Tcheremissine, “Solution of the Boltzmann Kinetic Equation for Low Speed Flows”, Transport Theory and Statistical Physics, 37:5 (2008), 564–575 | DOI | MR | Zbl

[12] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[13] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, inc., N.-Y.; Chapman and Hall, London, 1954 | Zbl